The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm. To this end, an explic...The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm. To this end, an explicit Lyapunov function as a weighted and squared H2-norm of a small perturbation of the stationary solution is constructed. The authors show that by a suitable choice of the boundary feedback conditions, the H2- exponential stability of the stationary solution follows. Due to this fact, the system is stabilized over an infinite time interval. Furthermore, exponential estimates for the C norm are derived.展开更多
基金Project supported by the Initial Training Network "FIRST" of the Seventh Framework Programme of the European Community’s (No. 238702) the DFG-Priority Program 1253: Optimization with PDEs (No. GU 376/7-1)
文摘The authors consider the problem of boundary feedback stabilization of the 1D Euler gas dynamics locally around stationary states and prove the exponential stability with respect to the H2-norm. To this end, an explicit Lyapunov function as a weighted and squared H2-norm of a small perturbation of the stationary solution is constructed. The authors show that by a suitable choice of the boundary feedback conditions, the H2- exponential stability of the stationary solution follows. Due to this fact, the system is stabilized over an infinite time interval. Furthermore, exponential estimates for the C norm are derived.