黄萎病是目前茄子生产中的主要病害之一,广泛收集、鉴定、筛选抗性资源,尤其是从野生近缘种中发掘抗性基因并培育抗病品种,是解决茄子黄萎病危害的优选途径。云南省拥有丰富的野生茄子资源但尚未有效利用。本研究针对云南省茄子主产区...黄萎病是目前茄子生产中的主要病害之一,广泛收集、鉴定、筛选抗性资源,尤其是从野生近缘种中发掘抗性基因并培育抗病品种,是解决茄子黄萎病危害的优选途径。云南省拥有丰富的野生茄子资源但尚未有效利用。本研究针对云南省茄子主产区收集到的3种黄萎病菌株,通过形态学鉴定和真菌18S r DNA/ITS鉴定,均属于大丽轮枝菌,并通过致病力鉴定,筛选出一株强致病力菌株(QZ-S);应用菌株QZ-S,通过苗期人工接种的方法对45份云南野生茄子资源开展黄萎病抗性鉴定,最终筛选出2份高抗材料(蒜芥茄和喀西茄)、2份抗病材料(水茄和多裂水茄)、6份中抗材料(1份刺天茄和5份红茄);此外,还筛选到了1份黄萎病高感材料239-3-2。本研究筛选出的材料可应用于茄子黄萎病抗病育种,为茄子及其他作物黄萎病抗病育种提供抗源。展开更多
The Raphanus sativus L. antifungal protein 1 (Rs_AFP1) gene was isolated by polymerase chain reaction (PCR). The complete open reading frame and the fragment encoding the putative mature protein were inserted into the...The Raphanus sativus L. antifungal protein 1 (Rs_AFP1) gene was isolated by polymerase chain reaction (PCR). The complete open reading frame and the fragment encoding the putative mature protein were inserted into the prokaryotic expression vector pET_32b(+), respectively. Subsequent expression showed that the Rs_AFP1 was produced in E. coli as a 27 kD fusion protein only when the N_terminal signal peptide was removed. After treatment with thrombin to remove part of the N_terminal His.tag sequence, the bacterially expressed Rs_AFP1 was used for fungal growth inhibition assay which was conducted on Verticillium dahliae Kleb., a soil_born fungus causing the cotton wilt disease. Results showed that, in the liquid medium, the Rs_AFP1 fusion protein at a concentration of 0.3 g/L clearly inhibited the growth of V. dahliae and the germination of spores. Thus the bacterially expressed fusion protein had the antifungal activity against V. dahliae.展开更多
Nitric oxide (NO) and hydrogen peroxide (H2O2) have been shown to be important signaling molecules that participate in the regulation of several physiological processes. In particular, they have significant role in pl...Nitric oxide (NO) and hydrogen peroxide (H2O2) have been shown to be important signaling molecules that participate in the regulation of several physiological processes. In particular, they have significant role in plant resistance to pathogens by contributing to induction defense genes. Here, whether NO and H2O2 participate in the resistance responses against Verticillium dahliae toxins (VD-toxins) and their effects on the expression of GST gene are studied. The results reveal that NO and H2O2 are produced as part of a complex network of signals that respond to VD-toxins and may converge to function both synergistically and independently by inducing resistant responses. GST gene is potentially involved in the resistance mechanism in the cotton suspension cells. NO induces the expression of GST gene independently of H2O2. H2O2 may be a more potent signal in the resistance responses against VD-toxins.展开更多
文摘黄萎病是目前茄子生产中的主要病害之一,广泛收集、鉴定、筛选抗性资源,尤其是从野生近缘种中发掘抗性基因并培育抗病品种,是解决茄子黄萎病危害的优选途径。云南省拥有丰富的野生茄子资源但尚未有效利用。本研究针对云南省茄子主产区收集到的3种黄萎病菌株,通过形态学鉴定和真菌18S r DNA/ITS鉴定,均属于大丽轮枝菌,并通过致病力鉴定,筛选出一株强致病力菌株(QZ-S);应用菌株QZ-S,通过苗期人工接种的方法对45份云南野生茄子资源开展黄萎病抗性鉴定,最终筛选出2份高抗材料(蒜芥茄和喀西茄)、2份抗病材料(水茄和多裂水茄)、6份中抗材料(1份刺天茄和5份红茄);此外,还筛选到了1份黄萎病高感材料239-3-2。本研究筛选出的材料可应用于茄子黄萎病抗病育种,为茄子及其他作物黄萎病抗病育种提供抗源。
文摘The Raphanus sativus L. antifungal protein 1 (Rs_AFP1) gene was isolated by polymerase chain reaction (PCR). The complete open reading frame and the fragment encoding the putative mature protein were inserted into the prokaryotic expression vector pET_32b(+), respectively. Subsequent expression showed that the Rs_AFP1 was produced in E. coli as a 27 kD fusion protein only when the N_terminal signal peptide was removed. After treatment with thrombin to remove part of the N_terminal His.tag sequence, the bacterially expressed Rs_AFP1 was used for fungal growth inhibition assay which was conducted on Verticillium dahliae Kleb., a soil_born fungus causing the cotton wilt disease. Results showed that, in the liquid medium, the Rs_AFP1 fusion protein at a concentration of 0.3 g/L clearly inhibited the growth of V. dahliae and the germination of spores. Thus the bacterially expressed fusion protein had the antifungal activity against V. dahliae.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 3017555 and 30170087)
文摘Nitric oxide (NO) and hydrogen peroxide (H2O2) have been shown to be important signaling molecules that participate in the regulation of several physiological processes. In particular, they have significant role in plant resistance to pathogens by contributing to induction defense genes. Here, whether NO and H2O2 participate in the resistance responses against Verticillium dahliae toxins (VD-toxins) and their effects on the expression of GST gene are studied. The results reveal that NO and H2O2 are produced as part of a complex network of signals that respond to VD-toxins and may converge to function both synergistically and independently by inducing resistant responses. GST gene is potentially involved in the resistance mechanism in the cotton suspension cells. NO induces the expression of GST gene independently of H2O2. H2O2 may be a more potent signal in the resistance responses against VD-toxins.