Given the morphological characters of purple crabs identical with that of the tea-green ones except the body color, it is expected that the purple crabs and the tea-green ones were from the same species. In order to i...Given the morphological characters of purple crabs identical with that of the tea-green ones except the body color, it is expected that the purple crabs and the tea-green ones were from the same species. In order to identify the phylogenetic relationships between them at the molecular level, we amplified and compared two conserved mitochondrial gene fragments of purple and tea-green crabs through PCR-SSCP and DNA sequencing analyses. The results showed that there was no distinct variation of DNA bands of both the CO1 and 16srRNA genes detected in polyacrylamide gels through SSCP analysis between purple and tea-green crab samples, and the following sequence analysis of color-different crab individuals presented 99.81% and 99.91% nucleotide sequence identity of the CO1 and 16srRNA genes respectively. These indicated that there was no species or subspecies differentiation between purple and tea-green crabs, meaning that they belonged to the same species, Portunus trituberculatus.展开更多
Synthetic polymer membranes are widely used in many applications,including,among others,water purification,protein separation,and medicine.However,the use of existing polymer membranes faces major challenges,such as t...Synthetic polymer membranes are widely used in many applications,including,among others,water purification,protein separation,and medicine.However,the use of existing polymer membranes faces major challenges,such as the trade-off between permeability and selectivity,membrane fouling,and poor mechanical strength.To address these problems the authors have focused their research on surface/interfacial tailoring and the structure-property relationship of polymer membranes used in liquid separation systems.Progress has been made as follows:(1)a methodology for membrane surface functionalization and nanofiltration(NF)membrane preparation based on mussel-inspired catecholic chemistry was proposed and established;(2)a class of mechanically robust and environmentally-responsive composite membranes with hydrogel pore-filled in rigid macroporous supports was designed and developed;(3)a methodology for surface tailoring and antifouling modification of polymer membranes based on amphiphilic copolymers was created and the scientific implications for amphiphilic polymer membranes elaborated;(4)an adsorption membrane with both filtration and adsorption functions was designed and developed to achieve rapid removal of trace micropollutants,including heavy metal ions,organic dyes,plasticizer,antibiotics,and others.This mini-review briefly summarizes this work.展开更多
文摘Given the morphological characters of purple crabs identical with that of the tea-green ones except the body color, it is expected that the purple crabs and the tea-green ones were from the same species. In order to identify the phylogenetic relationships between them at the molecular level, we amplified and compared two conserved mitochondrial gene fragments of purple and tea-green crabs through PCR-SSCP and DNA sequencing analyses. The results showed that there was no distinct variation of DNA bands of both the CO1 and 16srRNA genes detected in polyacrylamide gels through SSCP analysis between purple and tea-green crab samples, and the following sequence analysis of color-different crab individuals presented 99.81% and 99.91% nucleotide sequence identity of the CO1 and 16srRNA genes respectively. These indicated that there was no species or subspecies differentiation between purple and tea-green crabs, meaning that they belonged to the same species, Portunus trituberculatus.
基金Project supported by the National Natural Science Foundation of China(Nos.51828301,51773175,and 51973185)the Fundamental Research Funds for the Central Universities,China。
文摘Synthetic polymer membranes are widely used in many applications,including,among others,water purification,protein separation,and medicine.However,the use of existing polymer membranes faces major challenges,such as the trade-off between permeability and selectivity,membrane fouling,and poor mechanical strength.To address these problems the authors have focused their research on surface/interfacial tailoring and the structure-property relationship of polymer membranes used in liquid separation systems.Progress has been made as follows:(1)a methodology for membrane surface functionalization and nanofiltration(NF)membrane preparation based on mussel-inspired catecholic chemistry was proposed and established;(2)a class of mechanically robust and environmentally-responsive composite membranes with hydrogel pore-filled in rigid macroporous supports was designed and developed;(3)a methodology for surface tailoring and antifouling modification of polymer membranes based on amphiphilic copolymers was created and the scientific implications for amphiphilic polymer membranes elaborated;(4)an adsorption membrane with both filtration and adsorption functions was designed and developed to achieve rapid removal of trace micropollutants,including heavy metal ions,organic dyes,plasticizer,antibiotics,and others.This mini-review briefly summarizes this work.