The property of multi-band operation has been studied and investigated analytically through the design of a rectangular patch microstrip antenna having different numbers of wide slots arranged at both the radiating ed...The property of multi-band operation has been studied and investigated analytically through the design of a rectangular patch microstrip antenna having different numbers of wide slots arranged at both the radiating edges. The analyses were carried out using the method of moments simulation software. It is shown that a patch with three slots has a multi-band feature with four resonant frequencies at 1.6, 1.8, 2.65, and 4.83 GHz and adequate values of return loss and gain. It is also shown that a patch with two pairs of wide slots arranged at both the radiating edges has the dual band feature with resonant frequencies at 1.64 and 1.8 GHz and good values of return loss and gain.展开更多
A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of...A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of the nonlinear oscillator, feedback controllers were designed. Bifurcation control equations were obtained by using the multiple scales method. And through the numerical analysis, good controller could be obtained by changing the feedback control gain. Then a feasible way of further research of saddle-node bifurcation was provided. Finally, an example shows that the feedback control method applied to the hanging bridge system of gas turbine is doable.展开更多
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and ...Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases.展开更多
In this paper N = 4 supersymmetry of generalized Morse oscillators in one dimension is studied. Both bound states and scattering states of its four superpartner Hamiltonians are analyzed by using unitary irreducible r...In this paper N = 4 supersymmetry of generalized Morse oscillators in one dimension is studied. Both bound states and scattering states of its four superpartner Hamiltonians are analyzed by using unitary irreducible representations of the noncompact Lie algebra su(1,1). The spectrum-generating algebra governing the Hamiltonian of the N = 4 supersymmetric Morse oscillator is shown to be connected with the realization of Lie superalgebra osp(1,2)or B(0,1) in terms of the variables of a supersymmetric two-dimensional harmonic oscillator.展开更多
The quasi-biweekly oscillation (QBWO) is a major intraseasonal variability (ISV) in the tropics. Based on bandpass-filtered outgoing longwave radiation (OLR) and wind field data, the predictability limits of the QBWO ...The quasi-biweekly oscillation (QBWO) is a major intraseasonal variability (ISV) in the tropics. Based on bandpass-filtered outgoing longwave radiation (OLR) and wind field data, the predictability limits of the QBWO in boreal summer and boreal winter are investigated using the nonlinear local Lyapunov exponent (NLLE) approach The analysis shows that the evolution of the mean error growth of the QBWO in boreal summer and the evolution of the mean error growth in boreal winter are comparable Both curves exhibit rapid growth in the initial stage followed by a slowly fluctuating, ascending trend before saturation is reached. As a result, the potential predictability limits for the boreal summer QBWO are very close to those for the boreal winter QBWO, with a lead time of approximately three weeks. Given the current limitations in the simulation and prediction of ISV, including the QBWO, the results of this study provide a useful reference for assessing the predictability of the QBWO using model simulations.展开更多
Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data fro...Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data from 1950 to 2011 at the Yangtze River Estuary.It can clearly reveal the multi-time scales structure,break point,change and distribution of periodic variation in the different time scales of the runoff series.The main conclusions are that:1) Repeated periodic oscillations accompanied by an extremely large fluctuation are presented in the runoff series with an obvious difference between wet and dry years,and the major periods of the time series are about 3,8,16 and 23 years respectively.Among them,the presented maximum periodic oscillation is 23 years scale.2) In the 23-year time scale,the wet periods are 1950-1958,1969-1980 and 1992-2003,and the dry periods are 1959-1968,1981-1991 and 2004-2011.3) It can be predicted from the view of long time scales that the low annual runoff will likely occur in the near future.展开更多
The characteristic time τD for decoherence process of a quantum nonlinear oscillator system under a nonzero temperature thermal bath is studied by expanding the linear entropy. By numerical analysis, it is shown that...The characteristic time τD for decoherence process of a quantum nonlinear oscillator system under a nonzero temperature thermal bath is studied by expanding the linear entropy. By numerical analysis, it is shown that at a non-zero temperature, the quantum coherence decays much faster than at zero temperature. Moreover, the non-zero temperature thermal bath will bring a crucial suppression to the quantum effects of the observables, which causes these quantum effects to become unable to persist up to the Ehrenfest time but is insufticient to destroy the quantum-classical transition.展开更多
This paper deals mainly with the dynamic response of a rigid disc bonded to the surface of a layered poroelastic half-space. The disc is subjected to time-harmonic torsional moment loadings. The half space under consi...This paper deals mainly with the dynamic response of a rigid disc bonded to the surface of a layered poroelastic half-space. The disc is subjected to time-harmonic torsional moment loadings. The half space under consideration consists of a number of layers with different thickness and material properties. Hankel transform techniques and transferring matrix method are used to solve the governing equations. The continuity of the displacement and stress fields between different layers enabled derivation of closed-form solutions in the transform domain. On the assumption that the contact between the disc and the half space is perfectly bonded, this dynamic mixed boundary-value problem can be reduced to dual integral equations, which are further reduced to Fredholm integral equations of the second kind and solved by numerical procedures. Selected numerical results for the dynamic impedance and displacement amplitude of the disc resting on different saturated models are presented to show the influence of the material and geometrical properties of both the saturated soil-foundation system and the nature of the load acting on it. The conclusions obtained can serve as guidelines for practical engineering.展开更多
Based on the advantages of SOI technology, the frequency performance of SiGe HBT with SOI structure has been simulated. Compared with bulk SiGe HBT, the results show that the buried oxide layer (BOX) can reduce coll...Based on the advantages of SOI technology, the frequency performance of SiGe HBT with SOI structure has been simulated. Compared with bulk SiGe HBT, the results show that the buried oxide layer (BOX) can reduce collector-base capacitance CCB with the maximum value 89.3%, substrate-base capacitance CSB with 94. 6%, and the maximum oscillation frequency is improved by 2.7. The SOl structure improves the frequency performance of SiGe HBT, which is adaptable to high-speed and high power applications.展开更多
We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic osci...We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic oscillations. Four frequencies of the oscillations are extracted by Fourier transforms. They agree with actions of photon closed-orbits going away and returning to the atom. These oscillations are explained as manifestations of quantum interference effects between the emitted photon wave near the atom and the returning photon waves travelling along various closed-orbits.展开更多
Atmospheric physics is a very complicated natural phenomenon and needs to simplify its basic models for the sea-air oscillator. And it is solved by using the approximate method. The variational iteration method is a s...Atmospheric physics is a very complicated natural phenomenon and needs to simplify its basic models for the sea-air oscillator. And it is solved by using the approximate method. The variational iteration method is a simple and valid method. In this paper the coupled system for a sea-air oscillator model of interdecadal climate fluctuations is considered. Firstly, through introducing a set of functions, and computing the variations, the Lagrange multipliers are obtained. And then, the generalized expressions of variational iteration are constructed. Finally, through selecting appropriate initial iteration from the iteration expressions, the approximations of solution for the sea-air oscillator model are solved successively.展开更多
A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous a...A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg 2SO 4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.展开更多
文摘The property of multi-band operation has been studied and investigated analytically through the design of a rectangular patch microstrip antenna having different numbers of wide slots arranged at both the radiating edges. The analyses were carried out using the method of moments simulation software. It is shown that a patch with three slots has a multi-band feature with four resonant frequencies at 1.6, 1.8, 2.65, and 4.83 GHz and adequate values of return loss and gain. It is also shown that a patch with two pairs of wide slots arranged at both the radiating edges has the dual band feature with resonant frequencies at 1.64 and 1.8 GHz and good values of return loss and gain.
基金Project(10672053) supported by the National Natural Science Foundation of ChinaProject(2002AA503010) supported by the National High-Tech Research and Development Program of China
文摘A weakly nonlinear oscillator was modeled by a sort of differential equation, a saddle-node bifurcation was found in case of primary and secondary resonance. To control the jumping phenomena and the unstable region of the nonlinear oscillator, feedback controllers were designed. Bifurcation control equations were obtained by using the multiple scales method. And through the numerical analysis, good controller could be obtained by changing the feedback control gain. Then a feasible way of further research of saddle-node bifurcation was provided. Finally, an example shows that the feedback control method applied to the hanging bridge system of gas turbine is doable.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.
基金Supported by the Natural Science Foundation of Ministry of Education of Jiangsu Province (02KJB470001).
文摘Oscillating heat pipes (OHPs) are very promising cooling devices. Their heat transfer performance is af- fected by many factors, and the form of the relationship between the performance and the factors is complex and non-linear. In this paper, the effects of charging ratio, inclination angle, and heat input and their interaction effects on heat transfer performance of a looped copper-water OHP are analyzed. First, suppose that the relationship between the response and the variables approximates a second-order model. And use the central composite design to arrange the ex- periment. Then, the method of least squares is used to estimate the parameters in the second-order model. Finally, multi- variate variance analysis is used to analyze the model. The results show that the assumption is right, that is to say, the re- lationship is well modeled by a second-order function. Among the three main effect variables, the effect of inclination angle is the most significant, but their interaction effects are not significant. In the range of the considered factors, both the optimum charging ratio and the optimum inclination angle increase as the heating water flow rate increases.
文摘In this paper N = 4 supersymmetry of generalized Morse oscillators in one dimension is studied. Both bound states and scattering states of its four superpartner Hamiltonians are analyzed by using unitary irreducible representations of the noncompact Lie algebra su(1,1). The spectrum-generating algebra governing the Hamiltonian of the N = 4 supersymmetric Morse oscillator is shown to be connected with the realization of Lie superalgebra osp(1,2)or B(0,1) in terms of the variables of a supersymmetric two-dimensional harmonic oscillator.
基金funded by the National Natural Science Foundation of China (41175069)the National Basic Research Program of China (973 program, 2010CB950400)
文摘The quasi-biweekly oscillation (QBWO) is a major intraseasonal variability (ISV) in the tropics. Based on bandpass-filtered outgoing longwave radiation (OLR) and wind field data, the predictability limits of the QBWO in boreal summer and boreal winter are investigated using the nonlinear local Lyapunov exponent (NLLE) approach The analysis shows that the evolution of the mean error growth of the QBWO in boreal summer and the evolution of the mean error growth in boreal winter are comparable Both curves exhibit rapid growth in the initial stage followed by a slowly fluctuating, ascending trend before saturation is reached. As a result, the potential predictability limits for the boreal summer QBWO are very close to those for the boreal winter QBWO, with a lead time of approximately three weeks. Given the current limitations in the simulation and prediction of ISV, including the QBWO, the results of this study provide a useful reference for assessing the predictability of the QBWO using model simulations.
基金supported by the National Key Basic Research Program of China (Grant No. 2012CB957704) Marine Public Welfare Program of China (Grant No. 201305003)
文摘Runoff series of the Yangtze River presents an intricate variation tendency under the reinforced influence of human activities.The Morlet Wavelet Transform method has been applied to analyze the annual runoff data from 1950 to 2011 at the Yangtze River Estuary.It can clearly reveal the multi-time scales structure,break point,change and distribution of periodic variation in the different time scales of the runoff series.The main conclusions are that:1) Repeated periodic oscillations accompanied by an extremely large fluctuation are presented in the runoff series with an obvious difference between wet and dry years,and the major periods of the time series are about 3,8,16 and 23 years respectively.Among them,the presented maximum periodic oscillation is 23 years scale.2) In the 23-year time scale,the wet periods are 1950-1958,1969-1980 and 1992-2003,and the dry periods are 1959-1968,1981-1991 and 2004-2011.3) It can be predicted from the view of long time scales that the low annual runoff will likely occur in the near future.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60472017 and 10347103, and the Natural Science Foundation of Liaoning Province of China under Grant No. 20031073
文摘The characteristic time τD for decoherence process of a quantum nonlinear oscillator system under a nonzero temperature thermal bath is studied by expanding the linear entropy. By numerical analysis, it is shown that at a non-zero temperature, the quantum coherence decays much faster than at zero temperature. Moreover, the non-zero temperature thermal bath will bring a crucial suppression to the quantum effects of the observables, which causes these quantum effects to become unable to persist up to the Ehrenfest time but is insufticient to destroy the quantum-classical transition.
基金Project (No. 50079027) supported by the National Natural ScienceFoundation of China
文摘This paper deals mainly with the dynamic response of a rigid disc bonded to the surface of a layered poroelastic half-space. The disc is subjected to time-harmonic torsional moment loadings. The half space under consideration consists of a number of layers with different thickness and material properties. Hankel transform techniques and transferring matrix method are used to solve the governing equations. The continuity of the displacement and stress fields between different layers enabled derivation of closed-form solutions in the transform domain. On the assumption that the contact between the disc and the half space is perfectly bonded, this dynamic mixed boundary-value problem can be reduced to dual integral equations, which are further reduced to Fredholm integral equations of the second kind and solved by numerical procedures. Selected numerical results for the dynamic impedance and displacement amplitude of the disc resting on different saturated models are presented to show the influence of the material and geometrical properties of both the saturated soil-foundation system and the nature of the load acting on it. The conclusions obtained can serve as guidelines for practical engineering.
文摘Based on the advantages of SOI technology, the frequency performance of SiGe HBT with SOI structure has been simulated. Compared with bulk SiGe HBT, the results show that the buried oxide layer (BOX) can reduce collector-base capacitance CCB with the maximum value 89.3%, substrate-base capacitance CSB with 94. 6%, and the maximum oscillation frequency is improved by 2.7. The SOl structure improves the frequency performance of SiGe HBT, which is adaptable to high-speed and high power applications.
基金The project supported by the Chinese National Key Basic Research Special Fund, the Natural Science Foundation of Beijing, and National Natural Science Foundation of China under Grant No. 90403028
文摘We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic oscillations. Four frequencies of the oscillations are extracted by Fourier transforms. They agree with actions of photon closed-orbits going away and returning to the atom. These oscillations are explained as manifestations of quantum interference effects between the emitted photon wave near the atom and the returning photon waves travelling along various closed-orbits.
文摘Atmospheric physics is a very complicated natural phenomenon and needs to simplify its basic models for the sea-air oscillator. And it is solved by using the approximate method. The variational iteration method is a simple and valid method. In this paper the coupled system for a sea-air oscillator model of interdecadal climate fluctuations is considered. Firstly, through introducing a set of functions, and computing the variations, the Lagrange multipliers are obtained. And then, the generalized expressions of variational iteration are constructed. Finally, through selecting appropriate initial iteration from the iteration expressions, the approximations of solution for the sea-air oscillator model are solved successively.
文摘A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO 4 aqueous and an aluminum rod in Al(NO 3) 3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg 2SO 4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.