Rare-earth elements (REEs) are essential metals for the design and development of sustainable energy applications, Recycling these elements from waste streams enriched in them is crucial for securing an independent ...Rare-earth elements (REEs) are essential metals for the design and development of sustainable energy applications, Recycling these elements from waste streams enriched in them is crucial for securing an independent future supply for sustainable applications, This study compares the mechanisms of mechan- ical activation prior to a hydrometallurgical acid-leaching process and a solvometallurgical mechanochemical leaching process for the recovery of REEs from green lamp phosphor, LaPO4:Ce3+, Th3+, After 60 min of processing time, the REE leaching rates showed a significant enhancement of 60% after cycled mechanical activation, and 98% after the combined mechanochemical leaching process, High-resolution transmission electron microscopy (HR-TEM) imaging disclosed the cause for the improved REE leaching rates: The improved leaching and leaching patterns could he attributed to changes in the crystal morphology from monocrystalline to polycrystalline, Reduction of the crystallite size to the nanoscale in a polycrystalline material creates irregular packing of chemical units, resulting in an increase in defect-rich grain boundaries in the crystals, which enhances the leaching process, A solvometallurgical method was developed to combine the mechanical activation and leaching process into a single step, which is beneficial for operational cost, This results in an efficient and simple process that provides an alternative and greener recycling route for lamp phosphor waste,展开更多
With the implementation of the GEOTRACES program, the biogeochemical cycle and distribution of tellurium (Te) in marine environments are becoming increasing environmental concerns. In this study, the concentration o...With the implementation of the GEOTRACES program, the biogeochemical cycle and distribution of tellurium (Te) in marine environments are becoming increasing environmental concerns. In this study, the concentration of dissolved Te in the Changjiang (Yangtze) River estuary and nearby waters was determined in May 2009 by hydride-generation atomic fluorescence spectrometry to elucidate the abundance, dominant species, distribution, and relationship with environmental factors. Results show that: (1) dissolved Te was low owing to its low abundance in the Earth's crust, high insolubility in water, and strong affinity to particulate matter; (2) Te(IV) and Te(VI) predominated in surface water. Te(VI) was the dominant species in bottom water, and Te(IV) was the minor species; (3) Horizontally, resulting from low phytoplankton metabolism and the weak reduction from Te(VI) to Te(IV) in the shore, Te(IV) was concentrated in the central zone instead of the coastal region. However, Te(VI) was abundant near the mouth of the Changjiang River where the Changjiang water is diluted and in the area to the south where the Taiwan Warm Current invaded. In the adsorption-desorption process, Te(IV) was negatively related to suspended paniculate matter (SPM), indicating that it was adsorbed by particulate matter. While for Te(VI), the positive correlation with SPM suggested that it was desorbed from the solid phase. In the estuary, dissolved Te had a negative correlation to salinity. However, it deviated from the dilution line in high-salinity regions due to the invasion of the Taiwan Warm Current and the mineralization of organic matter. The relationship between Te(IV) and SPM nutrients indicated that it was more bioavailable and more related to phosphorus than to nitrogen. Progress in the field is slow and more research is needed to quantify the input of Te to the estuary and evaluate the biochemical role of organisms.展开更多
Fluorescent nanoparticles (NPs), including quantum dots (QDs), dye-doped NPs, and rare earth-based NPs, etc., have been a major focus of research and development during the past decade. The impetus behind such endeavo...Fluorescent nanoparticles (NPs), including quantum dots (QDs), dye-doped NPs, and rare earth-based NPs, etc., have been a major focus of research and development during the past decade. The impetus behind such endeavors can be attributed to their unique chemical and optical properties, such as bright fluorescence, high photostability, large Stocks shift and flexible processability. The introduction of fluorescent NPs into analytical chemistry has opened up new venues for fluorescent analysis. In this review, we focus on the developments and analytical applications of fluorescent NPs in the chemical and biological sensing of pH, ions, organic compounds, small biological molecules, nucleic acids, proteins, virus and bacteria. The review also points out the in vitro and in vivo imaging application of fluorescent NPs at the cell and body levels. Meanwhile, the ad- vantages of NPs brought field of sensing and signal transductions are also discussed.展开更多
The morphologies of monolayers containing Eu(TTA)3Phen (TTA=thenoyltrifluoroace-tone, Phen = 1, 10-phenanthroline) were studied at the air/liquid interface on different subphases by fluorescence microscopy (FM). The c...The morphologies of monolayers containing Eu(TTA)3Phen (TTA=thenoyltrifluoroace-tone, Phen = 1, 10-phenanthroline) were studied at the air/liquid interface on different subphases by fluorescence microscopy (FM). The composite subphase was the basic premise for the stable existence of the rare earth compound at air/liquid interface. The process that rare earth compound phase changes from liquid expanded state to liquid condensed state corresponded to a plateau in the π-A isotherm. In the pure Eu(TTA)3Phen monolayer, rod domains of Eu(TTA)3Phen formed and packed with no order. In the mixed monolayers with stearic acid (SA), phase transition of SA occurred first and formed domains with an electric gradient field, which induced the rare earth compound to form luminescent ring domains. Influence of intermolecular interaction on the self-organized microstructure was revealed.展开更多
基金supported by KU Leuven (GOA/13/008 and IOFKP RARE3)FWO-Flanders for a SB PhD fellowship (1S23518N)the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme: Grant Agreement 694078-Solvometallurgy for critical metals (SOLCRIMET)
文摘Rare-earth elements (REEs) are essential metals for the design and development of sustainable energy applications, Recycling these elements from waste streams enriched in them is crucial for securing an independent future supply for sustainable applications, This study compares the mechanisms of mechan- ical activation prior to a hydrometallurgical acid-leaching process and a solvometallurgical mechanochemical leaching process for the recovery of REEs from green lamp phosphor, LaPO4:Ce3+, Th3+, After 60 min of processing time, the REE leaching rates showed a significant enhancement of 60% after cycled mechanical activation, and 98% after the combined mechanochemical leaching process, High-resolution transmission electron microscopy (HR-TEM) imaging disclosed the cause for the improved REE leaching rates: The improved leaching and leaching patterns could he attributed to changes in the crystal morphology from monocrystalline to polycrystalline, Reduction of the crystallite size to the nanoscale in a polycrystalline material creates irregular packing of chemical units, resulting in an increase in defect-rich grain boundaries in the crystals, which enhances the leaching process, A solvometallurgical method was developed to combine the mechanical activation and leaching process into a single step, which is beneficial for operational cost, This results in an efficient and simple process that provides an alternative and greener recycling route for lamp phosphor waste,
基金Supported by the National Basic Research Program of China(973 Program)(No.2011CB403602)the National Natural Science Foundation of China(No.41121064)
文摘With the implementation of the GEOTRACES program, the biogeochemical cycle and distribution of tellurium (Te) in marine environments are becoming increasing environmental concerns. In this study, the concentration of dissolved Te in the Changjiang (Yangtze) River estuary and nearby waters was determined in May 2009 by hydride-generation atomic fluorescence spectrometry to elucidate the abundance, dominant species, distribution, and relationship with environmental factors. Results show that: (1) dissolved Te was low owing to its low abundance in the Earth's crust, high insolubility in water, and strong affinity to particulate matter; (2) Te(IV) and Te(VI) predominated in surface water. Te(VI) was the dominant species in bottom water, and Te(IV) was the minor species; (3) Horizontally, resulting from low phytoplankton metabolism and the weak reduction from Te(VI) to Te(IV) in the shore, Te(IV) was concentrated in the central zone instead of the coastal region. However, Te(VI) was abundant near the mouth of the Changjiang River where the Changjiang water is diluted and in the area to the south where the Taiwan Warm Current invaded. In the adsorption-desorption process, Te(IV) was negatively related to suspended paniculate matter (SPM), indicating that it was adsorbed by particulate matter. While for Te(VI), the positive correlation with SPM suggested that it was desorbed from the solid phase. In the estuary, dissolved Te had a negative correlation to salinity. However, it deviated from the dilution line in high-salinity regions due to the invasion of the Taiwan Warm Current and the mineralization of organic matter. The relationship between Te(IV) and SPM nutrients indicated that it was more bioavailable and more related to phosphorus than to nitrogen. Progress in the field is slow and more research is needed to quantify the input of Te to the estuary and evaluate the biochemical role of organisms.
基金supported by the National Natural Science Foundation of China (90606003 & 20775021)International Science & Technology Cooperation Program of China (2010DFB30300)+2 种基金Program for Changjiang Scholar and Innovative Research Team in UniversityProgram for New Century Excellent Talents in University (NCET-09-0338)Hunan Natural Science Foundation (10JJ7002 & 08JJ1002)
文摘Fluorescent nanoparticles (NPs), including quantum dots (QDs), dye-doped NPs, and rare earth-based NPs, etc., have been a major focus of research and development during the past decade. The impetus behind such endeavors can be attributed to their unique chemical and optical properties, such as bright fluorescence, high photostability, large Stocks shift and flexible processability. The introduction of fluorescent NPs into analytical chemistry has opened up new venues for fluorescent analysis. In this review, we focus on the developments and analytical applications of fluorescent NPs in the chemical and biological sensing of pH, ions, organic compounds, small biological molecules, nucleic acids, proteins, virus and bacteria. The review also points out the in vitro and in vivo imaging application of fluorescent NPs at the cell and body levels. Meanwhile, the ad- vantages of NPs brought field of sensing and signal transductions are also discussed.
基金the Award Foundation for Excellent Young Scientists in Shandong Province and the Climbing Program.
文摘The morphologies of monolayers containing Eu(TTA)3Phen (TTA=thenoyltrifluoroace-tone, Phen = 1, 10-phenanthroline) were studied at the air/liquid interface on different subphases by fluorescence microscopy (FM). The composite subphase was the basic premise for the stable existence of the rare earth compound at air/liquid interface. The process that rare earth compound phase changes from liquid expanded state to liquid condensed state corresponded to a plateau in the π-A isotherm. In the pure Eu(TTA)3Phen monolayer, rod domains of Eu(TTA)3Phen formed and packed with no order. In the mixed monolayers with stearic acid (SA), phase transition of SA occurred first and formed domains with an electric gradient field, which induced the rare earth compound to form luminescent ring domains. Influence of intermolecular interaction on the self-organized microstructure was revealed.