Ion chromatography-ultra violet-hydride generation-Atomic Florescence Spectrometry was applied to detect 5 arsenic species in seafoods. The arsenic species studied include arsenobetaine(As B), arsenite(As(III)), dimet...Ion chromatography-ultra violet-hydride generation-Atomic Florescence Spectrometry was applied to detect 5 arsenic species in seafoods. The arsenic species studied include arsenobetaine(As B), arsenite(As(III)), dimethylarsinic acid(DMA), monomethylarsonic acid(MMA), and arsenate(As(V)), which were extracted from samples using 2% formic acid. Gradient elution using 33 mmol L^(-1) CH_3COONH_4 and 15 mmol L^(-1) Na_2CO_3 with 10 mL CH_3CH_2OH at pH 8.4 allowed the chromatographic separation of all the species on a Hamilton PRP-X100 anion-exchange column in less than 8 min. In this study, an ultrasound extraction method was used to extract arsenic species from seafood. The extraction efficiency was good and the recoveries from spiked samples were in the range of 72.6%–109%; the precision between sample replicates was higher than 3.6% for all determinations. The detection limits were 3.543 μg L^(-1) for As B, 0.4261 μg L^(-1) for As(III), 0.216 μg L^(-1) for DMA, 0.211 μg L^(-1) for MMA, and 0.709 μg L^(-1) for As(V), and the linear coefficients were greater than 0.999. We also developed an application of this method for the determination of arsenic species in bonito, Euphausia superba, and Enteromorpha with satisfactory results. Therefore, it was confirmed that this method was appropriate for the detection of arsenic species in seafood.展开更多
A new type of high-power broadband superfluorescent source of Yb3+-doped double-cladding photonic crystal fiber is reported experimentally, which is pumped at 976 nm by a high-power laser diode with the end-coupling m...A new type of high-power broadband superfluorescent source of Yb3+-doped double-cladding photonic crystal fiber is reported experimentally, which is pumped at 976 nm by a high-power laser diode with the end-coupling method. We have obtained a smooth broadband output of superfluorescence. The maximum output power is 1.649 W with a slope efficiency of 56.7%. The 3 dB bandwidth is 22.4 nm.To the best of our knowledge,this is the first report about SFS with such high output power of 1.649 W.展开更多
Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent ...Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.展开更多
We report a small molecule host of 4,4(-N,N)-dicarbazole-biphenyl(CBP) doped with 8% tris(2-phenylpyridine) iridium(Irppy3) for use in efficient green phosphorescent organic light-emitting devices(PHOLEDs) combined wi...We report a small molecule host of 4,4(-N,N)-dicarbazole-biphenyl(CBP) doped with 8% tris(2-phenylpyridine) iridium(Irppy3) for use in efficient green phosphorescent organic light-emitting devices(PHOLEDs) combined with different electron transport layers of Alq and BAlq. The PHOLEDs exhibit maximum current efficiency and power efficiency of 19.8 cd/A and 6.21 lm/W, respectively. The high performance of such PHOLEDs is attributed to the better electron mobile ability of BAlq and sub-monolayer quinacridone(QAD) as carrier trapping layer and equal charge carrier mobilities of hole and electron to form the broad carrier recombination zone in the emitting layer, which can 1reduce the triplet-triplet annihilation and improve the efficiency of the device.展开更多
基金funded by the National Major ScientificInstrument and Equipment Development Project of China (No.2012YQ090229)
文摘Ion chromatography-ultra violet-hydride generation-Atomic Florescence Spectrometry was applied to detect 5 arsenic species in seafoods. The arsenic species studied include arsenobetaine(As B), arsenite(As(III)), dimethylarsinic acid(DMA), monomethylarsonic acid(MMA), and arsenate(As(V)), which were extracted from samples using 2% formic acid. Gradient elution using 33 mmol L^(-1) CH_3COONH_4 and 15 mmol L^(-1) Na_2CO_3 with 10 mL CH_3CH_2OH at pH 8.4 allowed the chromatographic separation of all the species on a Hamilton PRP-X100 anion-exchange column in less than 8 min. In this study, an ultrasound extraction method was used to extract arsenic species from seafood. The extraction efficiency was good and the recoveries from spiked samples were in the range of 72.6%–109%; the precision between sample replicates was higher than 3.6% for all determinations. The detection limits were 3.543 μg L^(-1) for As B, 0.4261 μg L^(-1) for As(III), 0.216 μg L^(-1) for DMA, 0.211 μg L^(-1) for MMA, and 0.709 μg L^(-1) for As(V), and the linear coefficients were greater than 0.999. We also developed an application of this method for the determination of arsenic species in bonito, Euphausia superba, and Enteromorpha with satisfactory results. Therefore, it was confirmed that this method was appropriate for the detection of arsenic species in seafood.
基金This work was supported by the National Natural Science Foun-dation under Grant No.60377010 the"973"Project under GrantNo.2003CB314906 the Research Fund for Doctoral Pro-gramme for Higher Education under Grant No.2003005016 .
文摘A new type of high-power broadband superfluorescent source of Yb3+-doped double-cladding photonic crystal fiber is reported experimentally, which is pumped at 976 nm by a high-power laser diode with the end-coupling method. We have obtained a smooth broadband output of superfluorescence. The maximum output power is 1.649 W with a slope efficiency of 56.7%. The 3 dB bandwidth is 22.4 nm.To the best of our knowledge,this is the first report about SFS with such high output power of 1.649 W.
基金supported by the National Natural Science Foundation of China(62004074,51727809)the Science and Technology Department of Hubei Province(2019AAA063,2020BAA016)。
文摘Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.
基金supported by the Major Project of Science and Technology Office of Fujian Province of China(No.2014H0042)the Natural Science Foundation of Fujian Province of China(No.2015J01664)+1 种基金the Project of Science and Technology Research of Quanzhou in Fujian Province of China(Nos.2013Z125 and 2014Z137)the 2016 Annual National or Ministries Preparatory Research Foundation Project in Quanzhou Normal University(No.2016YYKJ21)
文摘We report a small molecule host of 4,4(-N,N)-dicarbazole-biphenyl(CBP) doped with 8% tris(2-phenylpyridine) iridium(Irppy3) for use in efficient green phosphorescent organic light-emitting devices(PHOLEDs) combined with different electron transport layers of Alq and BAlq. The PHOLEDs exhibit maximum current efficiency and power efficiency of 19.8 cd/A and 6.21 lm/W, respectively. The high performance of such PHOLEDs is attributed to the better electron mobile ability of BAlq and sub-monolayer quinacridone(QAD) as carrier trapping layer and equal charge carrier mobilities of hole and electron to form the broad carrier recombination zone in the emitting layer, which can 1reduce the triplet-triplet annihilation and improve the efficiency of the device.