Objective: The aims of this research were to purify and identify the 1 30 kDa (CagA) protein of H. pylori clinical isolate HP97002 and evaluate the rel ationships between the purified 130 kDa (CagA) protein and gastr...Objective: The aims of this research were to purify and identify the 1 30 kDa (CagA) protein of H. pylori clinical isolate HP97002 and evaluate the rel ationships between the purified 130 kDa (CagA) protein and gastric diseases. Met hods: The procedure for isolating the protein included 6 mol/L guanidine extract , size exclusion chromatography and elusion from gel. Sera of 68 patients with g astric diseases (44 with chronic gastritis,15 with atrophic gastritis,7 with p eptic ulcer disease,2 with gastric cancer ) were obtained, and the serological response to CagA was studied by Western-blot using the purified protein. Result s : The purified protein was 130 kDa and preserved good antigenicity and revealed basic isoelectric point about of 8.1. Among 68 sera, 43 sera could recognize the purified protein associated with chronic gastritis 47.7% (21/44),atrophic gast ritis 86.7% (13/15),peptic ulcer disease 100% (7/7),gastric cancer 100% (2/2). Compared with each other, the difference was significant (χ 2=13.327, P =0.004), and 130 kDa (CagA) protein was associated with severe gastric disease s (r_s=0.442, \%P\%=0.001). Conclusion: The 130 kDa (CagA) protein was asso ciated with severe gas tric diseases.展开更多
Long-terrn injectable microspheres have some inherent disadvantages such as migration of microspheres from the originalsite an.d the burst effect. In order to avoid these problems, microsphere-loaded thermosensitive, ...Long-terrn injectable microspheres have some inherent disadvantages such as migration of microspheres from the originalsite an.d the burst effect. In order to avoid these problems, microsphere-loaded thermosensitive, hydrogel system was designed and expected to achieve a zero-order release Of biomolecular drugs in relativehigh initial drug loadings. Lysozyme, an antibacterial protein usually used to reduce prosthetic valve endocarditis,was selected as the model drug. Poly (DL-lactide-co-glycolide) (PLGA) microspheres, prepared by solvent evaporation method, were employee to encapsulate lysozyme and dispersed into thermosensitive pre-gel solution containing methylcellulose (MC), polyethylene glycol (PEG), sodium citrate (SC), and sodium alginate (SA). The mixture could act asadrug reservoir by.performing sol-gel transition rapidly if the temperature was raised from roomtemperature to 37℃. The in vitro release results showed that the burst effect was avoided due to strengthening ofdiffusion resistance in the gel. The formulation was able.to deliver lysozy.me for over.30 daysin a nearly zero-order release profile with a rate of 32.8μg.d^-1 which exhibits its remarkable potential for effective aoolication in long-term drug delivery.展开更多
A model to correlate and predict the release behavior of drugs from hydrogel nanoparticles is presented in this paper. The nanoparticle is considered as a combination of a shell of an elastic semipermeable membrane an...A model to correlate and predict the release behavior of drugs from hydrogel nanoparticles is presented in this paper. The nanoparticle is considered as a combination of a shell of an elastic semipermeable membrane and a core of a fluid phase (After swelling equilibrium). The fluid core consists of network building materials and other components that are able to partition in hydrogel nanoparticle phase and surrounding coexisting liquid phase, and is enveloped by the membrane shell. The excess Gibbs energies of the hydrogel nanoparticle phase and the surrounding coexisting fluid phase are expressed e.g. using UNIQUAC equation with "free-volume" contribution for non-ionic solution and VERS-model for ionic one. The elastic properties of polymer network could be described, for example, by the "phanWm network" theory.展开更多
Poly (methacrylic acid-co-poloxamer) hydrogel networks were synthesized byfree-radical solution polymerization, and the dynamic swelling and in vitro release properties ofmodel drugs, dextromethorphan hydrobromide (DM...Poly (methacrylic acid-co-poloxamer) hydrogel networks were synthesized byfree-radical solution polymerization, and the dynamic swelling and in vitro release properties ofmodel drugs, dextromethorphan hydrobromide (DMP) and vitamin B_(12) (VB_(12)) were studied. Thesegels exhibited pH-dependant swelling and sustained drug release properties, and the water uptakerate and drug release rate in neutral or basic media were higher than that in acidic media. Theresults showed that the water uptake followed non-Fickian or zero order process in neutral or basicmedia, and the release of model drugs from hydrogels of appropriate composition was of zero orderkinetics over a period of several hours.展开更多
Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940...Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940,a commonly used pH-sensitive polymer,and the thickener hydroxypropyl methylcellulose(HPMC E4M)as an ophthalmic gel matrix to prepare an ophthalmic in situ gel of PNS.In addition,formula optimization was performed by assessing gelling capability with the results of in vitro release studies.In vitro(corneal permeation,rheological,and stability)and in vivo(ocular irritation and preliminary pharmacokinetics in the vitreous)studies were also performed.Results:The results demonstrated that the in situ gelling systems containing PNS showed a sustained release of the drug,making it an ideal ocular delivery system for improving posterior ocular bioavailability.Conclusions:This study lays the foundation for the research of PNS contained in an in situ pH-triggered gel as well as the development and improvement of related preparations.It concurrently traditional Chinese medicine with a contemporary in situ gelling approach to provide new directions for the treatment of posterior ocular diseases such as diabetic retinopathy.展开更多
Intelligent hydrogels is as drug carrier, and it has a good application prospect. There are some changes factors in the human environment, such as temperature, pH. Therefore, the temperature sensitive hydrogels and pH...Intelligent hydrogels is as drug carrier, and it has a good application prospect. There are some changes factors in the human environment, such as temperature, pH. Therefore, the temperature sensitive hydrogels and pH sensitive hydrogels can release system for drugs in the body. So the paper detailed descript a novel MWCNTs good dispersion of PMAA/MWCNTs nano hybrid hydrogels. The introduction of MWCNTs significantly increased the hydrogel pH response and mechanical strength, and depends on the MWCNTs component ratio, particle size and concentration of cross-linking agent. The study found, swelling rate of hybrid hydrogels was faster than the pure PMAA hydrogel, and the swelling behavior were explained. The compression stress-strain experiments should be found, MWCNTs load transfer plays an important role in improving the mechanical properties of the hybrid hydrogels network compression.展开更多
Brucine has anti-inflammatory and analgesic effects and is the main active compound of the seeds of Strychnos nux-vomica L. To study brucine niosomal gels, a reliable and rapid LC-MS/MS method was established to quant...Brucine has anti-inflammatory and analgesic effects and is the main active compound of the seeds of Strychnos nux-vomica L. To study brucine niosomal gels, a reliable and rapid LC-MS/MS method was established to quantify brucine levels in rats. Tissue distribution and pharmacokinetics of brucine were investigated after topical and oral application of brucine niosomal gels to rats. The plasma concentration versus time profiles suggested that systemic exposure of brucine for oral administration of brucine niosomal gels was higher than that for topical administration, and topical administration showed a relatively sustained release. There was a considerable amount of brucine distributed in the knee joint. These results provided a strong basis for the follow-up study of this preparation.展开更多
The abuse of antibiotics in treating microbial infections has led to the emergence and prevalence of drugresistant bacteria.Thus,the development of novel antibacterial materials is attracting increasing attention.Here...The abuse of antibiotics in treating microbial infections has led to the emergence and prevalence of drugresistant bacteria.Thus,the development of novel antibacterial materials is attracting increasing attention.Here,a series of flexible electrostatic hydrogels with excellent antibacterial ability were constructed using a mixture of nitric oxide(NO)-releasing nitrated chitosan(CSNO)and mesotetra(4-carboxyphenyl)porphine(TCPP)with salmon sperm DNA(ssDNA)solution.When cultured with gram-negative bacteria under solar simulator irradiation,TCPP-CSNO_(m)ssDNA_(n) hydrogels released reactive oxygen species(ROS)and NO to produce peroxynitrite ions(ONOO^(−)).ONOO−is efficient at killing bacteria,thereby improving the antimicrobial ability of photodynamic therapy against gram-negative bacteria.The hydrogels exhibited powerful antibacterial activity in vivo when used to treat skin infections caused by drugresistant bacteria,making them a promising candidate for clinical applications.A string of antibacterial hydrogels that release ROS and NO synergistically can bring new possibilities for effectively killing drug-resistant bacteria and be of great value in anti-infection wound dressings and other applications.展开更多
Biofilm-associated infections are difficult to treat in the clinics because the bacteria embedded in biofilm are ten to thousand times more resistant to traditional antibiotics than planktonic ones.Here,a smart hydrog...Biofilm-associated infections are difficult to treat in the clinics because the bacteria embedded in biofilm are ten to thousand times more resistant to traditional antibiotics than planktonic ones.Here,a smart hydrogel comprised of aminoglycoside antibiotics,pectinase,and oxidized dextran was developed to treat local biofilm-associated infections.The primary amines on aminoglycosides and pectinase were reacted with aldehyde groups on oxidized dextran via a pH-sensitive Schiff base linkage to form the hydrogel.Upon bacterial infection,the increased acidity triggers the release of both pectinase and aminoglycoside antibiotics.The released pectinase efficiently degrades extracellular polysaccharides surrounding the bacteria in biofilm,and thus greatly sensitizes the bacteria to aminoglycosides.The smart hydrogel efficiently eradicated biofilms and killed the embedded bacteria both in vitro and in vivo.This study provides a promising strategy for the treatment of biofilm-associated infections.展开更多
文摘Objective: The aims of this research were to purify and identify the 1 30 kDa (CagA) protein of H. pylori clinical isolate HP97002 and evaluate the rel ationships between the purified 130 kDa (CagA) protein and gastric diseases. Met hods: The procedure for isolating the protein included 6 mol/L guanidine extract , size exclusion chromatography and elusion from gel. Sera of 68 patients with g astric diseases (44 with chronic gastritis,15 with atrophic gastritis,7 with p eptic ulcer disease,2 with gastric cancer ) were obtained, and the serological response to CagA was studied by Western-blot using the purified protein. Result s : The purified protein was 130 kDa and preserved good antigenicity and revealed basic isoelectric point about of 8.1. Among 68 sera, 43 sera could recognize the purified protein associated with chronic gastritis 47.7% (21/44),atrophic gast ritis 86.7% (13/15),peptic ulcer disease 100% (7/7),gastric cancer 100% (2/2). Compared with each other, the difference was significant (χ 2=13.327, P =0.004), and 130 kDa (CagA) protein was associated with severe gastric disease s (r_s=0.442, \%P\%=0.001). Conclusion: The 130 kDa (CagA) protein was asso ciated with severe gas tric diseases.
基金Supported by the National Natural Science Foundation of China (No.20576057) and Fundamental Research Foundation of Tsinghua University (JCqn2005033).
文摘Long-terrn injectable microspheres have some inherent disadvantages such as migration of microspheres from the originalsite an.d the burst effect. In order to avoid these problems, microsphere-loaded thermosensitive, hydrogel system was designed and expected to achieve a zero-order release Of biomolecular drugs in relativehigh initial drug loadings. Lysozyme, an antibacterial protein usually used to reduce prosthetic valve endocarditis,was selected as the model drug. Poly (DL-lactide-co-glycolide) (PLGA) microspheres, prepared by solvent evaporation method, were employee to encapsulate lysozyme and dispersed into thermosensitive pre-gel solution containing methylcellulose (MC), polyethylene glycol (PEG), sodium citrate (SC), and sodium alginate (SA). The mixture could act asadrug reservoir by.performing sol-gel transition rapidly if the temperature was raised from roomtemperature to 37℃. The in vitro release results showed that the burst effect was avoided due to strengthening ofdiffusion resistance in the gel. The formulation was able.to deliver lysozy.me for over.30 daysin a nearly zero-order release profile with a rate of 32.8μg.d^-1 which exhibits its remarkable potential for effective aoolication in long-term drug delivery.
基金Science and Technology Ministry of Fujian (2005I010 and 2001Z046)
文摘A model to correlate and predict the release behavior of drugs from hydrogel nanoparticles is presented in this paper. The nanoparticle is considered as a combination of a shell of an elastic semipermeable membrane and a core of a fluid phase (After swelling equilibrium). The fluid core consists of network building materials and other components that are able to partition in hydrogel nanoparticle phase and surrounding coexisting liquid phase, and is enveloped by the membrane shell. The excess Gibbs energies of the hydrogel nanoparticle phase and the surrounding coexisting fluid phase are expressed e.g. using UNIQUAC equation with "free-volume" contribution for non-ionic solution and VERS-model for ionic one. The elastic properties of polymer network could be described, for example, by the "phanWm network" theory.
文摘Poly (methacrylic acid-co-poloxamer) hydrogel networks were synthesized byfree-radical solution polymerization, and the dynamic swelling and in vitro release properties ofmodel drugs, dextromethorphan hydrobromide (DMP) and vitamin B_(12) (VB_(12)) were studied. Thesegels exhibited pH-dependant swelling and sustained drug release properties, and the water uptakerate and drug release rate in neutral or basic media were higher than that in acidic media. Theresults showed that the water uptake followed non-Fickian or zero order process in neutral or basicmedia, and the release of model drugs from hydrogels of appropriate composition was of zero orderkinetics over a period of several hours.
文摘Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940,a commonly used pH-sensitive polymer,and the thickener hydroxypropyl methylcellulose(HPMC E4M)as an ophthalmic gel matrix to prepare an ophthalmic in situ gel of PNS.In addition,formula optimization was performed by assessing gelling capability with the results of in vitro release studies.In vitro(corneal permeation,rheological,and stability)and in vivo(ocular irritation and preliminary pharmacokinetics in the vitreous)studies were also performed.Results:The results demonstrated that the in situ gelling systems containing PNS showed a sustained release of the drug,making it an ideal ocular delivery system for improving posterior ocular bioavailability.Conclusions:This study lays the foundation for the research of PNS contained in an in situ pH-triggered gel as well as the development and improvement of related preparations.It concurrently traditional Chinese medicine with a contemporary in situ gelling approach to provide new directions for the treatment of posterior ocular diseases such as diabetic retinopathy.
文摘Intelligent hydrogels is as drug carrier, and it has a good application prospect. There are some changes factors in the human environment, such as temperature, pH. Therefore, the temperature sensitive hydrogels and pH sensitive hydrogels can release system for drugs in the body. So the paper detailed descript a novel MWCNTs good dispersion of PMAA/MWCNTs nano hybrid hydrogels. The introduction of MWCNTs significantly increased the hydrogel pH response and mechanical strength, and depends on the MWCNTs component ratio, particle size and concentration of cross-linking agent. The study found, swelling rate of hybrid hydrogels was faster than the pure PMAA hydrogel, and the swelling behavior were explained. The compression stress-strain experiments should be found, MWCNTs load transfer plays an important role in improving the mechanical properties of the hybrid hydrogels network compression.
基金National Science and Technology Major Projects for"Major New Drugs Innovation and Development"(Grant No.2017ZX09301016)
文摘Brucine has anti-inflammatory and analgesic effects and is the main active compound of the seeds of Strychnos nux-vomica L. To study brucine niosomal gels, a reliable and rapid LC-MS/MS method was established to quantify brucine levels in rats. Tissue distribution and pharmacokinetics of brucine were investigated after topical and oral application of brucine niosomal gels to rats. The plasma concentration versus time profiles suggested that systemic exposure of brucine for oral administration of brucine niosomal gels was higher than that for topical administration, and topical administration showed a relatively sustained release. There was a considerable amount of brucine distributed in the knee joint. These results provided a strong basis for the follow-up study of this preparation.
基金supported by the National Key R&D Program of China(2021YFB3800900)the National Natural Science Foundation of China(22122501,21875014 and 52073013)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910010024)。
文摘The abuse of antibiotics in treating microbial infections has led to the emergence and prevalence of drugresistant bacteria.Thus,the development of novel antibacterial materials is attracting increasing attention.Here,a series of flexible electrostatic hydrogels with excellent antibacterial ability were constructed using a mixture of nitric oxide(NO)-releasing nitrated chitosan(CSNO)and mesotetra(4-carboxyphenyl)porphine(TCPP)with salmon sperm DNA(ssDNA)solution.When cultured with gram-negative bacteria under solar simulator irradiation,TCPP-CSNO_(m)ssDNA_(n) hydrogels released reactive oxygen species(ROS)and NO to produce peroxynitrite ions(ONOO^(−)).ONOO−is efficient at killing bacteria,thereby improving the antimicrobial ability of photodynamic therapy against gram-negative bacteria.The hydrogels exhibited powerful antibacterial activity in vivo when used to treat skin infections caused by drugresistant bacteria,making them a promising candidate for clinical applications.A string of antibacterial hydrogels that release ROS and NO synergistically can bring new possibilities for effectively killing drug-resistant bacteria and be of great value in anti-infection wound dressings and other applications.
基金the National Key R&D Program of ChinaSynthetic Biology Research(2019YFA0904500)+1 种基金the National Natural Science Foundation of China(21725402 and51672191)the Natural Science Foundation of Shanghai(19ZR1415600)。
文摘Biofilm-associated infections are difficult to treat in the clinics because the bacteria embedded in biofilm are ten to thousand times more resistant to traditional antibiotics than planktonic ones.Here,a smart hydrogel comprised of aminoglycoside antibiotics,pectinase,and oxidized dextran was developed to treat local biofilm-associated infections.The primary amines on aminoglycosides and pectinase were reacted with aldehyde groups on oxidized dextran via a pH-sensitive Schiff base linkage to form the hydrogel.Upon bacterial infection,the increased acidity triggers the release of both pectinase and aminoglycoside antibiotics.The released pectinase efficiently degrades extracellular polysaccharides surrounding the bacteria in biofilm,and thus greatly sensitizes the bacteria to aminoglycosides.The smart hydrogel efficiently eradicated biofilms and killed the embedded bacteria both in vitro and in vivo.This study provides a promising strategy for the treatment of biofilm-associated infections.