期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多任务消息传递神经网络的药物不良反应预测
1
作者
陈君恒
卢佩雯
+1 位作者
韩芳芳
蔡永铭
《中国数字医学》
2023年第8期35-41,共7页
对已知药物不良反应和药物蛋白质链路分别构建二分图,并分别基于消息传递神经网络(MPNN)和TransE模型进行建模,同时以交叉压缩单元(CCU)作为共享单元,联结药物不良反应预测和药物蛋白质链路预测,构建多任务MPNN(MT-MPNN)模型,提高对未...
对已知药物不良反应和药物蛋白质链路分别构建二分图,并分别基于消息传递神经网络(MPNN)和TransE模型进行建模,同时以交叉压缩单元(CCU)作为共享单元,联结药物不良反应预测和药物蛋白质链路预测,构建多任务MPNN(MT-MPNN)模型,提高对未知药物不良反应的预测效果。对SIDER公开数据集的89855例样本数据和DrugBank的5928例数据进行五折交叉验证,实验结果显示,在测试集上其平均受试者工作特征曲线下面积(AUROC)和平均F1值分别为0.9469和0.8753,表明本研究提出的MT-MPNN模型可以辅助临床有效挖掘潜在未知的药物不良反应。
展开更多
关键词
药物
不良反应
预测
药物蛋白质链路预测
多任务学习
消息传递神经网络
下载PDF
职称材料
题名
基于多任务消息传递神经网络的药物不良反应预测
1
作者
陈君恒
卢佩雯
韩芳芳
蔡永铭
机构
广东药科大学医药信息工程学院
国家药品监督管理局药物警戒技术研究与评价重点实验室
广东省中医药精准医学大数据工程中心
出处
《中国数字医学》
2023年第8期35-41,共7页
基金
广东省药品监督管理局2022年科技创新项目-药物警戒关键技术与评价体系研究与应用(2022ZDZ06)。
文摘
对已知药物不良反应和药物蛋白质链路分别构建二分图,并分别基于消息传递神经网络(MPNN)和TransE模型进行建模,同时以交叉压缩单元(CCU)作为共享单元,联结药物不良反应预测和药物蛋白质链路预测,构建多任务MPNN(MT-MPNN)模型,提高对未知药物不良反应的预测效果。对SIDER公开数据集的89855例样本数据和DrugBank的5928例数据进行五折交叉验证,实验结果显示,在测试集上其平均受试者工作特征曲线下面积(AUROC)和平均F1值分别为0.9469和0.8753,表明本研究提出的MT-MPNN模型可以辅助临床有效挖掘潜在未知的药物不良反应。
关键词
药物
不良反应
预测
药物蛋白质链路预测
多任务学习
消息传递神经网络
Keywords
Adverse drug reaction prediction
Drug-protein links prediction
Multi-task learning
Message-passing neural network
分类号
R969.3 [医药卫生—药理学]
R319 [医药卫生—基础医学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多任务消息传递神经网络的药物不良反应预测
陈君恒
卢佩雯
韩芳芳
蔡永铭
《中国数字医学》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部