The acupoints and Chinese herbal medicines are quite different in their natures. In the present paper, the authors expound the differences of the natures between the acupoints and Chinese herbal medicines from a) sub...The acupoints and Chinese herbal medicines are quite different in their natures. In the present paper, the authors expound the differences of the natures between the acupoints and Chinese herbal medicines from a) substance carriers, b) the underlying mechanism in actions, and c) individual characteristics, etc..展开更多
Bacillus subtilis produces many chemlcally-dwerse seconaary metaDolltes or interest to chemists ano biologlsts. Based on this, this review gives a detailed overview of the natural components produced by B. subtilis in...Bacillus subtilis produces many chemlcally-dwerse seconaary metaDolltes or interest to chemists ano biologlsts. Based on this, this review gives a detailed overview of the natural components produced by B. subtilis including cyclic lipopeptides, polypeptides, proteins (enzymes), and non-peptide products. Their structures, bioactive ac- tivities and the relevant variants as novel lead structures for drug discovery are also described. The challenging effects of fermentation metabolites, isolation and purification, as well as the overproduction of bioactive com- pounds from B. subtilis by metabolic engineering, '~ere also highlighted. Systematically exploring biosynthetic routes and the functions of secondary metabolites from 13. subtilis may not only be beneficial in improving yields of the products, but also in helping them to be used in food industry and public medical service on a large-scale.展开更多
In this study,using a spontaneous emulsification/solvent extraction method,BCNU-loaded PLA nanoparticles (NPs) with small particle size and narrow size distribution have been acquired. The particle size of the NPs ran...In this study,using a spontaneous emulsification/solvent extraction method,BCNU-loaded PLA nanoparticles (NPs) with small particle size and narrow size distribution have been acquired. The particle size of the NPs ranged from 40~60 nm and 100~200 nm according to different requirements. SEM and TEM showed that the particle size considerably decreases with increasing emulsification concentration and decreasing PLA concentration and ratio of oil to water. The highest drug loading ratio and drug encapsulation efficiency of NPs were 5.63% and 33.45%. The results demonstrated that decrease of initial BCNU content resulted in a noticeably increased encapsulation yield. A thorough study in vitro showed that the drug could be steadily released from NPs for one week. In addition,drug-loaded NPs had higher antitumor activity,compared with free BCNU,and sustained drug release characteristics as well.展开更多
Various active components have been extracted from the root of Polygonum cuspidatum. However, the genetic basis for their activity is virtually unknown. In this study, 25600002 short reads (2.3 Gb) of P. cuspidatum ...Various active components have been extracted from the root of Polygonum cuspidatum. However, the genetic basis for their activity is virtually unknown. In this study, 25600002 short reads (2.3 Gb) of P. cuspidatum root transcriptome were obtained via lllumina HiSeq 2000 sequencing. A total of 86418 urtigenes were assembled de novo and annotated. Twelve, 18, 60 and 54 unigenes were respectively mapped to the mevalonic acid (MVA), methyl-D-erythritol 4-phosphate (MEP), shikimate and resveratrol biosynthesis pathways, suggesting that they are involved in the biosynthesis of pharmaceutically important anthra- quinone and resveratrol. Eighteen potential UDP-glycosyltransferase unigenes were identified as the candidates most likely to be involved in the biosynthesis of glycosides of secondary metabolites. Identification of relevant genes could be important in eventually increasing the yields of the medicinally useful constituents of the P. cuspidatum root. From the previously published transcriptome data of 19 non-model plant taxa, 1127 shared orthologs were identified and characterized. This information will be very useful for future functional, phylogenetic and evolutionary studies of these plants.展开更多
Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions.In stem cells,a small number of pathways,notably those of TGF-?/BMP,Hedgehog,Notch,and Wnt,are re...Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions.In stem cells,a small number of pathways,notably those of TGF-?/BMP,Hedgehog,Notch,and Wnt,are responsible for the regulation of pluripotency and differentiation.During embryonic development,these pathways govern cell fate specifications as well as the formation of tissues and organs.In adulthood,their normal functions are important for tissue homeostasis and regeneration,whereas aberrations result in diseases,such as cancer and degenerative disorders.In complex biological systems,stem cell signaling pathways work in concert as a network and exhibit crosstalk,such as the negative crosstalk between Wnt and Notch.Over the past decade,genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways.Indeed,discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry.Remarkable progress has been made and several promising drug candidates have entered into clinical trials.This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.展开更多
文摘The acupoints and Chinese herbal medicines are quite different in their natures. In the present paper, the authors expound the differences of the natures between the acupoints and Chinese herbal medicines from a) substance carriers, b) the underlying mechanism in actions, and c) individual characteristics, etc..
基金Supported by the National Natural Science Foundation of China(21376215)the National Science and Technology Major Project of New Drug,China(2012ZX09103101-075)+2 种基金the Innovative Research Platform co-constructed by Zhejiang University and Taizhou City,and the Science and Technology Project of Zhejiang Province(2014C33174)the Major State Basic Research Development Program of China(2011CB710803)the National High-Tech Research and Development Program of China(2012AA022302)
文摘Bacillus subtilis produces many chemlcally-dwerse seconaary metaDolltes or interest to chemists ano biologlsts. Based on this, this review gives a detailed overview of the natural components produced by B. subtilis including cyclic lipopeptides, polypeptides, proteins (enzymes), and non-peptide products. Their structures, bioactive ac- tivities and the relevant variants as novel lead structures for drug discovery are also described. The challenging effects of fermentation metabolites, isolation and purification, as well as the overproduction of bioactive com- pounds from B. subtilis by metabolic engineering, '~ere also highlighted. Systematically exploring biosynthetic routes and the functions of secondary metabolites from 13. subtilis may not only be beneficial in improving yields of the products, but also in helping them to be used in food industry and public medical service on a large-scale.
文摘In this study,using a spontaneous emulsification/solvent extraction method,BCNU-loaded PLA nanoparticles (NPs) with small particle size and narrow size distribution have been acquired. The particle size of the NPs ranged from 40~60 nm and 100~200 nm according to different requirements. SEM and TEM showed that the particle size considerably decreases with increasing emulsification concentration and decreasing PLA concentration and ratio of oil to water. The highest drug loading ratio and drug encapsulation efficiency of NPs were 5.63% and 33.45%. The results demonstrated that decrease of initial BCNU content resulted in a noticeably increased encapsulation yield. A thorough study in vitro showed that the drug could be steadily released from NPs for one week. In addition,drug-loaded NPs had higher antitumor activity,compared with free BCNU,and sustained drug release characteristics as well.
基金supported by the National Science and Technology Major Program (Grant No.2008ZX10005-004)
文摘Various active components have been extracted from the root of Polygonum cuspidatum. However, the genetic basis for their activity is virtually unknown. In this study, 25600002 short reads (2.3 Gb) of P. cuspidatum root transcriptome were obtained via lllumina HiSeq 2000 sequencing. A total of 86418 urtigenes were assembled de novo and annotated. Twelve, 18, 60 and 54 unigenes were respectively mapped to the mevalonic acid (MVA), methyl-D-erythritol 4-phosphate (MEP), shikimate and resveratrol biosynthesis pathways, suggesting that they are involved in the biosynthesis of pharmaceutically important anthra- quinone and resveratrol. Eighteen potential UDP-glycosyltransferase unigenes were identified as the candidates most likely to be involved in the biosynthesis of glycosides of secondary metabolites. Identification of relevant genes could be important in eventually increasing the yields of the medicinally useful constituents of the P. cuspidatum root. From the previously published transcriptome data of 19 non-model plant taxa, 1127 shared orthologs were identified and characterized. This information will be very useful for future functional, phylogenetic and evolutionary studies of these plants.
文摘Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions.In stem cells,a small number of pathways,notably those of TGF-?/BMP,Hedgehog,Notch,and Wnt,are responsible for the regulation of pluripotency and differentiation.During embryonic development,these pathways govern cell fate specifications as well as the formation of tissues and organs.In adulthood,their normal functions are important for tissue homeostasis and regeneration,whereas aberrations result in diseases,such as cancer and degenerative disorders.In complex biological systems,stem cell signaling pathways work in concert as a network and exhibit crosstalk,such as the negative crosstalk between Wnt and Notch.Over the past decade,genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways.Indeed,discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry.Remarkable progress has been made and several promising drug candidates have entered into clinical trials.This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.