期刊文献+
共找到329篇文章
< 1 2 17 >
每页显示 20 50 100
基于变遗忘因子的改进卡尔曼滤波锂电池荷电状态估算研究
1
作者 张涛 陈东明 +1 位作者 侯鹏鹏 王尧彬 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第4期126-132,共7页
目的 为了解决锂电池在不同放电阶段和噪声干扰下荷电状态(SOC)估算结果发散问题,方法 通过分析锂电池机理特性,查找影响估算结果的因素和原因。选取适当的数学模型并得到开路电压特性-荷电状态(OCV-SOC)试验曲线后,针对传统算法估算误... 目的 为了解决锂电池在不同放电阶段和噪声干扰下荷电状态(SOC)估算结果发散问题,方法 通过分析锂电池机理特性,查找影响估算结果的因素和原因。选取适当的数学模型并得到开路电压特性-荷电状态(OCV-SOC)试验曲线后,针对传统算法估算误差波动较大的问题,提出变遗忘因子递推最小二乘(VFF-RLS)与自适应平方根无迹卡尔曼滤波(ASRUKF)算法联合估算SOC。结果 以动态应力测试(DST)为例,遗忘因子最小二乘(FFRLS)算法的开路电压初期误差最大值为0.02 V,稳定后端电压误差为0.004~0.010 V,误差收敛时间约45 s;UKF算法的SOC估算初期最大误差为0.03,在400 s左右逐渐收敛到理论值附近,稳定后的波动误差为0.83%;VFF-RLS算法在相同的条件下,开路电压实验初期误差最大值为0.04 V,稳定后端电压误差为0.003~0.007 V,误差收敛时间约10 s;ASRUKF的SOC估算初期最大误差为0.1,随着算法迭代,200 s内收敛到理论值附近,稳定后最大波动误差0.413%。结论 为了保证算法适用的普遍性,在不同初值下观察算法的收敛性,结果表明,在复杂的试验工况下,与传统算法比较,改进算法的参数辨识速度明显加快,精度提高,在估算SOC阶段,波动范围明显变小;在实际值误差较大的情况下,依然能够迅速收敛,证明本文方法的改进切实可行,可用于实际电池研究。 展开更多
关键词 变遗忘因子 状态 自适应滤波 平方根滤波
下载PDF
基于动态遗忘因子递推最小二乘法和改进粒子滤波算法的锂电池SOC估计
2
作者 卢昊 李广军 张兰春 《车用发动机》 北大核心 2024年第3期66-73,共8页
为了提高锂电池荷电状态(SOC)估计的精度,提出了一种基于动态遗忘因子递推最小二乘法和改进粒子滤波算法相结合的锂电池SOC估计方法。针对固定遗忘因子递推最小二乘法在电池参数辨识中难以同时保持快速收敛和稳定性的问题,引入动态遗传... 为了提高锂电池荷电状态(SOC)估计的精度,提出了一种基于动态遗忘因子递推最小二乘法和改进粒子滤波算法相结合的锂电池SOC估计方法。针对固定遗忘因子递推最小二乘法在电池参数辨识中难以同时保持快速收敛和稳定性的问题,引入动态遗传因子,以模型辨识值和实际值的残差为变量构建修正公式,实现遗忘因子动态调整。为了改善粒子滤波(PF)的粒子多样性丧失问题,采用白鹭群优化算法(ESOA)对粒子滤波算法进行优化。仿真结果表明,基于动态遗忘因子递推最小二乘法和改进粒子滤波算法的锂电池SOC估计误差始终保持在0.3%以内,平均绝对误差和标准差为0.15%和0.17%,与其他算法相比具有更好的精度和稳定性。 展开更多
关键词 状态(soc) 动态遗忘因子 递推最小二乘法 白鹭群优化算法 粒子滤波
下载PDF
SOC对锂离子电池存储性能影响及K值筛选工艺
3
作者 许汉良 陈仁鹏 +1 位作者 伍斌 南俊民 《电池》 CAS 北大核心 2024年第4期519-524,共6页
锂离子电池荷电状态(SOC)和老化工艺对电池的存储性能以及模组电池的制备和性能具有重要影响。研究SOC对磷酸铁锂锂离子电池存储性能的影响。高温(60℃)长时间存储时,随着SOC降低,电池的产气变严重,负极上发生的副反应是产气的主要来源... 锂离子电池荷电状态(SOC)和老化工艺对电池的存储性能以及模组电池的制备和性能具有重要影响。研究SOC对磷酸铁锂锂离子电池存储性能的影响。高温(60℃)长时间存储时,随着SOC降低,电池的产气变严重,负极上发生的副反应是产气的主要来源。在30%SOC下,电池处于产气较少的理想存储状态。在30%SOC下,通过调整45℃高温和常温老化时间对K值筛选工艺进行优化。高温老化有利于区分不同自放电速率的电池。模组充放电一致性测试表明,随高温老化时间的延长,模组充放电压差减小,电池一致性提高。实验结果为磷酸铁锂锂离子电池长期储存、运输和制备提供参考。 展开更多
关键词 磷酸铁锂 锂离子 状态(soc) 高温老化 模组
下载PDF
储能电池实时荷电状态联合估计方法 被引量:1
4
作者 李先锋 胡晨刚 +3 位作者 卜莉敏 陈攀 苗文捷 黄文哲 《浙江电力》 2024年第5期73-82,共10页
准确估计储能电池的SOC(荷电状态),对于实现电池的均衡充放电,减少因电池过充过放引起的容量下降具有重要意义。针对储能电池的复杂化学状态和SOC非线性时变特性,提出一种基于VFFRLS(变遗忘因子递归最小二乘)和UKF(无迹卡尔曼滤波)算法... 准确估计储能电池的SOC(荷电状态),对于实现电池的均衡充放电,减少因电池过充过放引起的容量下降具有重要意义。针对储能电池的复杂化学状态和SOC非线性时变特性,提出一种基于VFFRLS(变遗忘因子递归最小二乘)和UKF(无迹卡尔曼滤波)算法的锂离子电池SOC联合估计方法。采用VFFRLS在线辨识电池模型的电阻、电容参数,根据辨识结果,利用UKF算法实时估计电池SOC。实验结果表明,该联合算法具有较高的准确性和稳定性。 展开更多
关键词 状态估计 变遗忘因子递归最小二乘 无迹卡尔曼滤波
下载PDF
基于自适应无迹卡尔曼滤波算法的锂电池荷电状态预测
5
作者 蒙永龙 艾学忠 +2 位作者 郑巍 王明达 汪冬冬 《化工自动化及仪表》 CAS 2024年第2期294-300,共7页
针对无迹卡尔曼滤波在噪声不稳定和工况复杂的情况下锂电池荷电状态预测准确度低的问题,提出基于二阶等效RC电路模型,采用遗忘因子递推最小二乘法对模型参数进行辨识,使用自适应无迹卡尔曼滤波算法(AUKF)对锂电池荷电状态进行预测,最后... 针对无迹卡尔曼滤波在噪声不稳定和工况复杂的情况下锂电池荷电状态预测准确度低的问题,提出基于二阶等效RC电路模型,采用遗忘因子递推最小二乘法对模型参数进行辨识,使用自适应无迹卡尔曼滤波算法(AUKF)对锂电池荷电状态进行预测,最后在DST数据工况下,验证预测模型的准确性。对无迹卡尔曼滤波(UKF)算法和提出的AUKF算法进行仿真对比,结果表明:所提算法的最大误差在±0.02之内,预测精度更高、适用性更强。 展开更多
关键词 状态 自适应无迹卡尔曼滤波 遗忘因子递推最小二乘
下载PDF
基于改进自适应卡尔曼滤波算法的锂离子电池荷电状态估计
6
作者 宋海飞 王乐红 +2 位作者 原义栋 赵天挺 陈捷 《电力系统保护与控制》 EI CSCD 北大核心 2024年第20期72-82,共11页
针对锂离子电池荷电状态(state of charge,SOC)估计过程中传统卡尔曼滤波算法噪声特性难以确定、收敛速度慢及精度差等一系列问题,提出了一种改进自适应卡尔曼滤波算法。首先,建立了电池等效电路模型,并在不同温度和SOC状态下,对模型参... 针对锂离子电池荷电状态(state of charge,SOC)估计过程中传统卡尔曼滤波算法噪声特性难以确定、收敛速度慢及精度差等一系列问题,提出了一种改进自适应卡尔曼滤波算法。首先,建立了电池等效电路模型,并在不同温度和SOC状态下,对模型参数进行了辨识和精度验证。然后,对传统自适应卡尔曼滤波算法系统过程噪声协方差矩阵计算方式进行了正定性优化。此外,在状态估计结果的修正过程中,引入了对模型等误差变化进行补偿的增益因子。最后,通过实验电池的仿真和测试验证了所提算法的有效性。结果表明,在不同温度和工况条件下,SOC的估计误差均在4%以内,改进自适应卡尔曼滤波算法的估计精度和收敛速度均优于改进前的算法和常用的扩展卡尔曼滤波(extendedkalmanfilter,EKF)算法,具有较强的实用性。 展开更多
关键词 锂离子 状态 卡尔曼滤波算法 增益因子 实用性
下载PDF
基于ASIT-UKF算法的锂电池荷电状态估计
7
作者 陈阳舟 伊磊 《北京工业大学学报》 CAS CSCD 北大核心 2024年第6期683-692,共10页
针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman f... 针对无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计锂电池荷电状态(state of charge,SOC)时精度低、稳定性差、产生的sigma点过多导致计算难度大等不足,提出一种基于自适应球形不敏变换方式的无迹卡尔曼滤波(unscented Kalman filter based on adaptive spherical insensitive transformation,ASIT-UKF)算法。该算法通过使用球形不敏变换方式选择权系数以及初始化一元向量对sigma点的产生进行选取。与UKF算法相比,ASIT-UKF算法产生的sigma点减少近50%,使得算法的计算复杂度大大降低。同时,将产生的所有sigma点进行单位球形面上的归一化处理,提高了数值的稳定性。考虑到实际运行中锂电池系统噪声干扰带来的不确定性,加入Sage-Husa自适应滤波器对不确定性噪声的干扰进行实时更新和修正,以达到提高在线锂电池SOC估计精度的目的。最后,将均方根误差和最大绝对误差计算公式引入到性能估计指标中。实验结果表明,ASIT-UKF算法在准确度、鲁棒性和收敛性方面具有优越的性能。 展开更多
关键词 状态(state of charge soc)估计 球形不敏变换 Sage-Husa滤波 无迹卡尔曼滤波(unscented Kalman filter UKF)算法 均方根误差
下载PDF
新能源汽车锂离子电池荷电状态研究
8
作者 何亚奇 朱真锋 +1 位作者 苑琳 丁艳波 《汽车维修技师》 2024年第14期51-52,共2页
锂离子电池是新能源汽车的储能器件,其储存能量多少和寿命长短决定着电动汽车未来发展的方向。作为电动汽车的核心电池管理系统(BMS)负责保护和监控电池状态,以确保电池在行驶过程中的安全性和可靠性。本文用无迹卡尔曼滤波法进一步对... 锂离子电池是新能源汽车的储能器件,其储存能量多少和寿命长短决定着电动汽车未来发展的方向。作为电动汽车的核心电池管理系统(BMS)负责保护和监控电池状态,以确保电池在行驶过程中的安全性和可靠性。本文用无迹卡尔曼滤波法进一步对荷电状态进行分析,以提高对电池组荷电状态的预测准确度。 展开更多
关键词 池寿命 BMS soc 状态
下载PDF
温度自适应SMO算法估计锂离子电池的SOC
9
作者 吕高 樊郭宇 +2 位作者 张嘉蕾 杜君莉 史书怀 《电池》 CAS 北大核心 2024年第3期334-339,共6页
现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式... 现有对锂离子电池荷电状态(SOC)的估计,没有考虑温度变化导致的SOC估计准确度降低。提出一种考虑温度的滑模观测(SMO)法进行SOC估计。基于混合脉冲功率测试(HPPC)实验的数据,得到18650型LiFePO4锂离子电池的SOC与温度、参数之间的拟合式,通过台风(Typhoon)系统进行半实物实验分析。温度自适应SMO算法在低温或常温工况下的平均误差较传统SMO算法降低0.3~0.5个百分点,直接通过拟合式所快速估计的SOC较温度自适应SMO算法平均误差在2%左右,常温25℃工况下误差低于1%,能够实现较高的估计精准度,为快速估计SOC提供了较好的算法参考。 展开更多
关键词 状态(soc)估计 滑模观测(SMO) 温度影响 锂离子 半实物实验分析
下载PDF
考虑应力特征的锂离子电池SOC估算
10
作者 徐元中 章俊 +1 位作者 常春 姜久春 《电池》 CAS 北大核心 2024年第4期477-481,共5页
准确估计荷电状态(SOC)是保证锂离子电池可靠运行的基础。提出基于多维特征特别是结合力信号的数据驱动的SOC估算方法,对锂离子电池应力特征进行Savitzky-Golay(S-G)滤波,形成优化重构后的应力信号。提出基于麻雀搜索算法(SSA)改进的反... 准确估计荷电状态(SOC)是保证锂离子电池可靠运行的基础。提出基于多维特征特别是结合力信号的数据驱动的SOC估算方法,对锂离子电池应力特征进行Savitzky-Golay(S-G)滤波,形成优化重构后的应力信号。提出基于麻雀搜索算法(SSA)改进的反向传播(BP)神经网络,提高神经网络的全局寻优能力。用恒流(CC)、联邦城市驾驶工况(FUDS)进行评估。在BP神经网络中,相比于单纯使用电信号,考虑应力特征的SOC估算的均方根误差(RMSE)降低89.1%,平均绝对误差(MAE)降低88.8%,考虑应力特征的SSA-BP神经网络的SOC估算误差在0.3%以内,鲁棒性和精确性更高。 展开更多
关键词 状态(soc) 锂离子 应力 神经网络 麻雀搜索算法(SSA)
下载PDF
引入PID反馈的SHAEKF算法估算电池SOC
11
作者 蔡黎 向丽红 +1 位作者 晏娟 徐青山 《电池》 CAS 北大核心 2024年第1期47-51,共5页
电池荷电状态(SOC)的估算精度是电动汽车电池组的重要指标。为提升SOC估算精度,在融合Sage-Husa扩展卡尔曼滤波(SHEKF)算法与自适应扩展卡尔曼滤波(AEKF)算法的基础上,增加比例积分微分(PID)反馈环节,形成改进算法。采用粒子群优化(PSO... 电池荷电状态(SOC)的估算精度是电动汽车电池组的重要指标。为提升SOC估算精度,在融合Sage-Husa扩展卡尔曼滤波(SHEKF)算法与自适应扩展卡尔曼滤波(AEKF)算法的基础上,增加比例积分微分(PID)反馈环节,形成改进算法。采用粒子群优化(PSO)算法对二阶RC等效电路模型进行参数辨识;用开源电池数据集对模型和算法进行实验和分析。改进的SHAEKF算法在电池动态应力测试(DST)、北京动态应力测试(BJDST)和美国联邦城市驾驶(FUDS)等工况下的平均估计误差都在1%以内,与单纯的融合算法SHAEKF算法相比,最大误差可减小5%。 展开更多
关键词 状态(soc)估算 二阶RC等效路模型 比例积分微分(PID) 粒子群优化(PSO)算法 自适应扩展卡尔曼滤波(AEKF)
下载PDF
基于CSO-AUKF的锂电池SOC估算方法
12
作者 吴华伟 洪强 +1 位作者 陈运星 马毓博 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期118-126,共9页
电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨... 电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨识精度,联合AUKF算法对SOC进行估算;基于混合脉冲功率测试工况(HPPC)和间歇恒流放电工况下的数据对该方法有效性进行了验证。研究结果表明:基于CSO-AUKF估算,SOC最大误差小于1.64%,估算精度及稳定性均好于遗传算法。 展开更多
关键词 车辆工程 池汽车 状态(soc) 猫群(CSO)算法 自适应无迹卡尔曼滤波(AUKF)算法
下载PDF
基于多新息扩展卡尔曼滤波的锂离子电池SOC估计
13
作者 吴胜利 欧华 邢文婷 《科学技术与工程》 北大核心 2024年第16期6742-6748,共7页
锂电池具有高能量密度、循环寿命长等优点而被广泛应用于电动汽车动力装置,但车辆运行状况复杂多变,且电池内部呈现高度非线性的性质,导致电池荷电状态(state of charge, SOC)难以准确计算。为优化锂电池SOC估计精度,构建结合Warburg元... 锂电池具有高能量密度、循环寿命长等优点而被广泛应用于电动汽车动力装置,但车辆运行状况复杂多变,且电池内部呈现高度非线性的性质,导致电池荷电状态(state of charge, SOC)难以准确计算。为优化锂电池SOC估计精度,构建结合Warburg元件的分数阶二阶RC模型,采用自适应遗传算法进行参数辨识;融合多新息理论和扩展卡尔曼滤波算法,提出基于多新息扩展卡尔曼滤波(multi innovation extended Kalman filter, MIEKF)的锂离子电池SOC估计算法,并利用试验数据验证该方法的有效性,为提高SOC估计精度和车载锂电池的循环使用寿命提供了新的方法途径和实践支撑。 展开更多
关键词 锂离子 分数阶模型 多新息理论 扩展卡尔曼滤波(EKF) 状态(soc)
下载PDF
基于改进AFFRLS-AUKF的锂电池SOC估计
14
作者 陈亮 卢玉斌 林正廉 《电源技术》 CAS 北大核心 2024年第6期1109-1115,共7页
准确估计锂电池荷电状态(SOC)是保障电池管理系统安全稳定运行的重要前提之一。为了提高锂离子电池SOC估计精度,提出一种改进自适应遗忘因子最小二乘法(AFFRLS)与自适应无迹卡尔曼滤波算法(AUKF)联合估计锂离子电池SOC的估计方法。利用... 准确估计锂电池荷电状态(SOC)是保障电池管理系统安全稳定运行的重要前提之一。为了提高锂离子电池SOC估计精度,提出一种改进自适应遗忘因子最小二乘法(AFFRLS)与自适应无迹卡尔曼滤波算法(AUKF)联合估计锂离子电池SOC的估计方法。利用改进AFFRLS对已建立的二阶RC等效电路模型进行参数辨识,再结合AUKF估计锂离子电池SOC。通过动态应力测试(DST)工况和城市道路循环(UDDS)工况验证得到联合估计方法的平均绝对误差为0.44%,均方根误差为0.61%,表明改进的AFFRLS-AUKF方法可提高参数辨识及电池SOC估计的准确性和鲁棒性。 展开更多
关键词 锂离子 状态 自适应遗忘因子 无迹卡尔曼滤波
下载PDF
基于等效电路模型和数据驱动模型融合的SOC和SOH联合估计方法 被引量:1
15
作者 刘萍 李泽文 +2 位作者 蔡雨思 王文 夏向阳 《电工技术学报》 EI CSCD 北大核心 2024年第10期3232-3243,共12页
针对电池SOC与SOH估计结果相互影响,单独估计准确度不高的问题,该文提出了一种基于等效电路模型和数据驱动模型融合的SOC和SOH联合估计方法。通过构建考虑老化和SOC的电池二阶RC等效电路模型,采用带遗忘因子的递推最小二乘法,在不同SOC... 针对电池SOC与SOH估计结果相互影响,单独估计准确度不高的问题,该文提出了一种基于等效电路模型和数据驱动模型融合的SOC和SOH联合估计方法。通过构建考虑老化和SOC的电池二阶RC等效电路模型,采用带遗忘因子的递推最小二乘法,在不同SOC和SOH的情况下,对电池的参数进行在线辨识,实现电池参数在线辨识与电池SOC和SOH估计的耦合。以锂离子电池自SOC=20%到恒流充电阶段结束所需时间为输入,电池SOH值为输出,训练GPR模型,实现电池SOH估计。将输出的SOH估计值与电池的额定容量相乘,得到电池的实际容量,更新二阶RC状态空间方程,采用扩展卡尔曼滤波算法对电池进行SOC估计,实现电池SOH估计和SOC估计之间的联合。采用牛津大学电池退化数据集和NASA随机使用电池数据集进行算法验证,结果表明,所提联合估计方法能够在电池的生命周期内较准确地跟随锂离子电池SOC和SOH的真实值。 展开更多
关键词 锂离子 状态 健康状态 高斯过程回归 带遗忘因子的递推最小二乘法
下载PDF
分数一阶电路等效模型估计锂离子电池SOC 被引量:1
16
作者 徐鹏跃 张国玲 +1 位作者 王涛 程佳 《电池》 CAS 北大核心 2024年第1期72-76,共5页
等效电路模型可用于对锂离子电池进行监控和管理,其精度与复杂性至关重要。选用整数一阶、整数二阶和分数一阶等3种电路模型对锂离子电池进行等效建模,采用基于遗忘因子的递推最小二乘(FFRLS)法辨识模型中的参数,并应用辨识所得的参数,... 等效电路模型可用于对锂离子电池进行监控和管理,其精度与复杂性至关重要。选用整数一阶、整数二阶和分数一阶等3种电路模型对锂离子电池进行等效建模,采用基于遗忘因子的递推最小二乘(FFRLS)法辨识模型中的参数,并应用辨识所得的参数,通过扩展卡尔曼滤波算法估计荷电状态(SOC)。对比模型预测的端电压与真实端电压,以及估计所得SOC与真实SOC,发现整数一阶模型估计SOC的误差约为8%,整数二阶模型的误差约为7%,而分数一阶模型的误差仅约为1%。 展开更多
关键词 等效路模型 整数阶模型 分数阶模型 状态(soc) 基于遗忘因子的递推最小二乘(FFRLS)法
下载PDF
21700锂离子电池在不同SOC下的热失控实验研究
17
作者 朱亚宁 张振东 +4 位作者 盛雷 陈龙 朱泽华 付林祥 毕青 《汽车安全与节能学报》 CAS CSCD 北大核心 2024年第2期218-225,共8页
为提升电池热安全、减少新能源汽车热灾害,揭示不同荷电状态(SOC)下对电池热失控危害的影响机制。在SOC为100%~0%几个荷电状态下研究了21700锂电池的热失控特性,包括电池在热失控当中的表面温度、工作电压、质量损失、能量、TNT当量和... 为提升电池热安全、减少新能源汽车热灾害,揭示不同荷电状态(SOC)下对电池热失控危害的影响机制。在SOC为100%~0%几个荷电状态下研究了21700锂电池的热失控特性,包括电池在热失控当中的表面温度、工作电压、质量损失、能量、TNT当量和破坏半径等。结果表明:电池的温升幅度随SOC的增大而升高,高电量电池热失控触发所需的时间更短,100%SOC电池在603 s触发热失控,相比于25%SOC缩短了59.1%,其危险系数更大;SOC越大,电池热失控后的质量损失也越大;电池热失控过程释放的能量、TNT当量与破坏半径均随SOC的增加而增大,电池的热失控危害性与SOC之间呈现出正相关关系。 展开更多
关键词 锂离子 状态(soc) 热失控 破坏半径
下载PDF
基于无迹卡尔曼滤波的动力电池状态估计
18
作者 李锦满 李儒欢 +5 位作者 李浩南 李存鑫 邱子桐 郭凯 吴锴 周峻 《电池》 CAS 北大核心 2024年第3期340-343,共4页
准确预测动力电池的荷电状态(SOC)与健康状态(SOH)对电动汽车电池系统的安全运行至关重要。卡尔曼滤波(KF)算法被广泛用于动力电池的状态估计,但非线性误差较大。提出利用无迹卡尔曼滤波(UKF)算法实现对动力电池状态的准确估计。首先,... 准确预测动力电池的荷电状态(SOC)与健康状态(SOH)对电动汽车电池系统的安全运行至关重要。卡尔曼滤波(KF)算法被广泛用于动力电池的状态估计,但非线性误差较大。提出利用无迹卡尔曼滤波(UKF)算法实现对动力电池状态的准确估计。首先,通过分析动力电池实验数据,建立一阶等效电路模型,模型拟合优度达到0.992。随后,加入容量衰退机制模拟锂离子电池老化过程,并对电池进行恒流充电以及随机放电循环,模拟动力电池实际工况。不同初始值下,SOC、SOH估计的均方根误差均小于0.01,且随着循环次数的增加,误差逐渐减小。 展开更多
关键词 锂离子 状态估计 等效路模型 状态(soc) 健康状态(SOH) 无迹卡尔曼滤波(UKF)
下载PDF
基于FFRLS和ASR-UKF滤波算法的锂电池SOC估计
19
作者 邓丹 刘胜永 +2 位作者 王顺利 刘鹏辉 胡聪 《电源技术》 CAS 北大核心 2024年第2期299-305,共7页
锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线... 锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线性及系统噪声不确定性等缺点,提出了一种自适应平方根无迹卡尔曼滤波(ASR-UKF)算法,该算法利用平方根算法处理均值和协方差,确保了状态协方差的半正定性和稳定性,并引入自适应滤波算法对噪声进行实时修正,消除了系统时变噪声影响。结果表明,FFRLS能有效解决数据饱和及算法矩阵计算量大的问题,等效模型精度高达98%。在混合动力脉冲特性(HPPC)测试和北京公交动态测试工况(BBDST)下,ASR-UKF算法SOC估计最大误差分别为3.264%和0.572%,具备更好的跟踪效果,验证了改进算法良好的收敛性与自适应性。 展开更多
关键词 状态 二阶Thevenin模型 遗忘因子递推最小二乘法 自适应平方根无迹卡尔曼滤波算法
下载PDF
多元宇宙优化估算锂离子电池的SOC与SOH
20
作者 朱冰 夏天 《电池》 CAS 北大核心 2024年第5期688-692,共5页
估计电池的荷电状态(SOC)和健康状态(SOH)是锂离子电池管理中最复杂的任务之一。目前,针对SOC和SOH的估计存在跟踪值误差较大、噪声误差较大和计算量大等问题,引入多元宇宙优化(MVO)算法,对照电池的实际输出电压,模型的拟合度可达95.3%... 估计电池的荷电状态(SOC)和健康状态(SOH)是锂离子电池管理中最复杂的任务之一。目前,针对SOC和SOH的估计存在跟踪值误差较大、噪声误差较大和计算量大等问题,引入多元宇宙优化(MVO)算法,对照电池的实际输出电压,模型的拟合度可达95.3%。通过14次迭代得到SOC的稳定估计值,与传统的循环次数法对比,SOH估计的稳定性提高了119%,并减小了78%的计算空间需求。 展开更多
关键词 算法 状态估计 多元宇宙优化(MVO) 状态(soc) 健康状态(SOH) 储能
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部