The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyc...The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone.展开更多
The objective of this paper is to study the influence of repeated variable action on long-term behavior of concrete structural elements using quasi-permanent combination of actions, for the assessment of long-term eff...The objective of this paper is to study the influence of repeated variable action on long-term behavior of concrete structural elements using quasi-permanent combination of actions, for the assessment of long-term effects (e.g., effects due to creep and shrinkage in concrete structures), as it is proposed in Eurocodes. Extensive experimental program and analytical research using model B3 and AAEM (age adjusted effective modulus) method was performed in order to define quasi-permanent factor ψ2, for two specific loading histories. These loading histories were consist of long-term permanent action "G" and repeated variable action "Q". The variable load was applied in cycles of loading/unloading for 24 h and 48 h in period of 400 days appropriately for one series of concrete elements. 24 reinforced concrete beams, dimensions 150 mm × 280 mm × 3,000 mm, were tested. Twelve beams were made of concrete class C30/37 and 12 of concrete class C60/75.展开更多
To investigate the causes qf cracks in multistory masonry buildings, the effect of vertical load difference on cracking behaviors was investigated experimentally by testing and measuring the displacements at the testi...To investigate the causes qf cracks in multistory masonry buildings, the effect of vertical load difference on cracking behaviors was investigated experimentally by testing and measuring the displacements at the testing points of a large sized real masonry U-shaped model. Additionally, the cracking behaviors in U-shaped model were analyzed with shear stress and numerical simulated with ANSYS software. The experimental results show that the deformation increases with the increase of the vertical load. The vertical load results in different deformation between the bearing wall and non-bearing wall, which leads to cracking on the non-beating wall. The rapid deformation happens at 160 kN and cracks occur firstly at the top section of non-bearing wall near to the bearing wall. New cracks are observed and the previous cracks are enlarged and developed with the increase of vertical load. The maximum crack opening reaches 12 mm, and the non-bearing wall is about to collapse when the vertical load arrives at 380 kN. Theoretical analysis indicates that the shear stress reaches the maximum value at the top section of the non-bearing wall, and thus cracks tend to happen at the top section of the non-bearing wall. Numerical simulation results about the cracking behaviors are in good agreement with experiments results.展开更多
Experimental investigations into the collapse behavior of a box-shape hull girder subjected to extreme wave-induced loads are presented.The experiment was performed using a scaled model in a tank.In the middle of the ...Experimental investigations into the collapse behavior of a box-shape hull girder subjected to extreme wave-induced loads are presented.The experiment was performed using a scaled model in a tank.In the middle of the scaled model,sacrificial specimens with circular pillar and trough shapes which respectively show different bending moment-displacement characteristics were mounted to compare the dynamic collapse characteristics of the hull girder in waves.The specimens were designed by using finite element(FE)-analysis.Prior to the tank tests,static four-point-bending tests were conducted to detect the load-carrying capacity of the hull girder.It was shown that the load-carrying capacity of a ship including reduction of the capacity after the ultimate strength can be reproduced experimentally by employing the trough type specimens.Tank tests using these specimens were performed under a focused wave in which the hull girder collapses under once and repetitive focused waves.It was shown from the multiple collapse tests that the increase rate of collapse becomes higher once the load-carrying capacity enters the reduction path while the increase rate is lower before reaching the ultimate strength.展开更多
Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on compariso...Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously.展开更多
Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly...Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.展开更多
In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Bas...In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.展开更多
Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scal...Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scale test program was conducted to study the uplift behavior and load transfer mechanism of PHC piles in soft soil. The pullout load tests were divided into two groups with different diameters, and there were three piles in each group. A detailed discussion of the axial load transfer and pile skin resistance distribution was also included. It is found from the tests that the uplift capacity increases with increasing the diameter of pile. When the diameter of piles increases from 500 to 600 mm, the uplift load is increased by 51.2%. According to the load-displacement (Q-S) curves, all the piles do not reach the ultimate state at the maximum load. The experimental results show that the piles still have uplift bearing capacity.展开更多
This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its ev...This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its eventual displacements on direction parallel to the construction axis. For the purpose of the experiment, geodetic measurement techniques and 2D DIC (digital image correlation) method (utilizing photographs of the object recorded with digital camera) were compared with regard to credibility, efficiency and accuracy. The vertical and horizontal displacements were monitored by tachometers measurements. The deformations in x-axis and y-axis on the wall surface was monitored by 2D DIC. It has been noticed that 2D DIC method is a surface method, continuous--not discreet. It allows for continuous observations of surface deformations, which is not possible in case of tachemetric measurements. Despite many advantages, the 2D DIC method lacks unambiguous evaluation of precision and relevance of designated displacements, which is rather significant for possibilities of utilization in technical control of large engineered objects. It should be also marked that the tachometric method is more reliable but is more laborious. Research of this type might comprise additional element for the assessment of the influence of dynamic loads, such as activating turbine water flow, onto the overall condition of the surveyed structure.展开更多
The aim of this study is to numerically investigate the influence of particle breakage on the mechanical behavior of granular materials using a discrete element method(DEM). To enable particle crushing, non-crushable ...The aim of this study is to numerically investigate the influence of particle breakage on the mechanical behavior of granular materials using a discrete element method(DEM). To enable particle crushing, non-crushable elementary particles are boned together to represents the granular aggregates which can be crushed when the external force exceeds its strength. The flaw of the aggregate was also modeled by randomly distributed void. Single particle crushing tests were carried out to determine the distribution of particle strength. The results of single particle crushing tests illustrate that the simulated single particle fracture strength and pattern agree well with the Weibull's distribution equation.Conventional oedometer tests, drained monotonic and cyclic triaxial tests were also carried out to investigate the crushing of the aggregates and the associated mechanical behaviors. The effect of confining pressure on the crushing of aggregates and the mechanical behavior was also analyzed. It was found that the peak stress and dilation decrease significantly when particle crushing was considered.The deformation behavior of the specimen is essentially controlled by two factors: particle rearrangement-induced dilation and particle crushing-induced contraction. The increase of permanent strain and the reduction of dilation were observed during cyclic loading and they tend to reach a stable state after a certain number of cycles. The crushing of aggregate is most significant in the first two cycles. The results also indicated that for the same axial strain the volumetric strain and the bound breakage in the cyclic loading tests are significantly larger than that in the monotonic loading tests,especially at high cyclic stress ratio.展开更多
The objective of this investigation was to study the behavior of deep pile caps and the ultimate load-carrying capacity. Four 1/10 scaled models of nine-pile caps were cast and tested on vertical loads to failure. The...The objective of this investigation was to study the behavior of deep pile caps and the ultimate load-carrying capacity. Four 1/10 scaled models of nine-pile caps were cast and tested on vertical loads to failure. The destruction shapes of pile caps,the correlation between load and displacement,and the internal stresses were analyzed systematically. The results demonstrated that the failures of all the four models are resulted from punching shear; the internal flow of the forces in nine-pile caps can be approximated by "strut-and-tie" model. Furthermore,the failure loads of these specimens were predicted by some of the present design methods and the calculated results were compared with the experimental loads. The comparative results also indicated that the "strut-and-tie" model is a more reasonable design method for deep pile caps design.展开更多
The present contribution gives an overview about recent research on a TBC (thermal barrier coating) system consisted of (I) an intermetallic MCrAIY-alloy BC (bond coat) applied by VPS (vacuum plasma spraying) ...The present contribution gives an overview about recent research on a TBC (thermal barrier coating) system consisted of (I) an intermetallic MCrAIY-alloy BC (bond coat) applied by VPS (vacuum plasma spraying) and (2) an YSZ (yttria stabilised zirconia) top coat APS (air plasma sprayed) at Forschungszentrum Juelich, Institute of Energy and Climate Research (IEK-2). The influence of high temperature dwell time, maximum and minimum temperature on crack growth kinetics during thermal cycling of such plasma sprayed TBCs is investigated using scanning electron microscopy and AE (acoustic emission) analysis. Thermocyclic life in terms of accumulated time at maximum temperature decreases with increasing high temperature dwell time and increases with increasing minimum temperature. AE analysis proves that crack growth mainly occurs during cooling at temperatures below the ductile-to-brittle transition temperature of the BC. Superimposed mechanical load cycles accelerate delamination crack growth and, in case of sufficiently high mechanical loadings, result in premature fatigue failure of the substrate. A life prediction model based on TGO growth kinetics and a fracture mechanics approach has been developed which accounts for the influence of maximum and minimum temperature as well as of high temperature dwell time with good accuracy in an extremely wide parameter range.展开更多
Behavior of structural elements under blast loading is different from that under usual loading conditions that are considered in conventional structural deigns. Cantilever slabs are more vulnerable than most other ele...Behavior of structural elements under blast loading is different from that under usual loading conditions that are considered in conventional structural deigns. Cantilever slabs are more vulnerable than most other elements under blast loads because of their shape. Understanding the blast behavior of cantilever slabs is useful in strengthening them against blast loads. In this paper, blast loading design envelopes for cantilever slabs are proposed using which, the blast behavior of conventional cantilever slabs can be identified. The paper describes the theories behind these envelopes and the way they can be applied to improve conventional designs. These envelopes have been prepared using numerical techniques. The theories used are accepted, verified and validated theories. The paper shows the possibility of converting a conventional cantilever slab design into impulsive regime design with minor adjustments to the structural design. It points out the importance of increasing slab thickness and controlling steel/concrete ratio for strengthening conventional cantilever slab designs and the requirement of reinforcement at top and bottom fibers.展开更多
Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided com...Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.展开更多
In order to well understand the mechanism of the mechanotransduction in bone, we propose a new model of transverse iso- tropic and poroelastic osteon cylinder considering Haversian fluid pressure. The analytical pore ...In order to well understand the mechanism of the mechanotransduction in bone, we propose a new model of transverse iso- tropic and poroelastic osteon cylinder considering Haversian fluid pressure. The analytical pore pressure and velocity solutions are obtained to examine the fluid transport behavior and pressure distribution in a loaded osteon on two different exterior sur- face cases. Case I is stress free and fully permeable and case I1 is impermeable. The following are the results obtained. (i) The Haversian fluid may not be ignored because it can enlarge the whole osteonal fluid pressure field, and it bears the external loads together with the solid skeleton. (ii) The increase of both axial strain amplitude and frequency can result in the increase of fluid pressure and velocity amplitudes, while in case II, the frequency has little effect on the fluid pressure amplitude. (iii) Under the same loading conditions, the pressure amplitude in case II is larger than that in case I, while the velocity amplitude is smaller than that in case I. This model permits the linking of the external loads to the osteonal fluid pressure and velocity, which may be a stimulus to the mechanotransduction of bone remodeling signals.展开更多
The dynamic compressive deformation of cellular titanium with regularly distributed cylindrical pores is investigated to evaluate the effect of shock attenuation and obtain the shock Hugoniot relationship of the mater...The dynamic compressive deformation of cellular titanium with regularly distributed cylindrical pores is investigated to evaluate the effect of shock attenuation and obtain the shock Hugoniot relationship of the material. Dynamic compression experiments are conducted at room temperature using a single-stage light gas gun. The Hugoniot relations between shock wave velocity and particle velocity for the cellular titanium samples with porosities 20% and 30% are obtained. The shock response of the regular cellular titanium shows a clear wave attenuation effect. Numerical simulations are also conducted to supplement the experimental study.Inelastic deformation is observed in the samples using optical micrographs, indicating that the deformation of pores contributes significantly to the shock wave attenuation of the cellular titanium material.展开更多
基金Project(200801410005) supported by Doctoral Foundation of Ministry of Education of China
文摘The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone.
文摘The objective of this paper is to study the influence of repeated variable action on long-term behavior of concrete structural elements using quasi-permanent combination of actions, for the assessment of long-term effects (e.g., effects due to creep and shrinkage in concrete structures), as it is proposed in Eurocodes. Extensive experimental program and analytical research using model B3 and AAEM (age adjusted effective modulus) method was performed in order to define quasi-permanent factor ψ2, for two specific loading histories. These loading histories were consist of long-term permanent action "G" and repeated variable action "Q". The variable load was applied in cycles of loading/unloading for 24 h and 48 h in period of 400 days appropriately for one series of concrete elements. 24 reinforced concrete beams, dimensions 150 mm × 280 mm × 3,000 mm, were tested. Twelve beams were made of concrete class C30/37 and 12 of concrete class C60/75.
基金Project(50778067) supported by the National Natural Science Foundation of China
文摘To investigate the causes qf cracks in multistory masonry buildings, the effect of vertical load difference on cracking behaviors was investigated experimentally by testing and measuring the displacements at the testing points of a large sized real masonry U-shaped model. Additionally, the cracking behaviors in U-shaped model were analyzed with shear stress and numerical simulated with ANSYS software. The experimental results show that the deformation increases with the increase of the vertical load. The vertical load results in different deformation between the bearing wall and non-bearing wall, which leads to cracking on the non-beating wall. The rapid deformation happens at 160 kN and cracks occur firstly at the top section of non-bearing wall near to the bearing wall. New cracks are observed and the previous cracks are enlarged and developed with the increase of vertical load. The maximum crack opening reaches 12 mm, and the non-bearing wall is about to collapse when the vertical load arrives at 380 kN. Theoretical analysis indicates that the shear stress reaches the maximum value at the top section of the non-bearing wall, and thus cracks tend to happen at the top section of the non-bearing wall. Numerical simulation results about the cracking behaviors are in good agreement with experiments results.
基金Supported by the Ministry of Education, Science, Sports, and Culture, Grant-in-aid for Scientific Research (A), (23246150), 2011
文摘Experimental investigations into the collapse behavior of a box-shape hull girder subjected to extreme wave-induced loads are presented.The experiment was performed using a scaled model in a tank.In the middle of the scaled model,sacrificial specimens with circular pillar and trough shapes which respectively show different bending moment-displacement characteristics were mounted to compare the dynamic collapse characteristics of the hull girder in waves.The specimens were designed by using finite element(FE)-analysis.Prior to the tank tests,static four-point-bending tests were conducted to detect the load-carrying capacity of the hull girder.It was shown that the load-carrying capacity of a ship including reduction of the capacity after the ultimate strength can be reproduced experimentally by employing the trough type specimens.Tank tests using these specimens were performed under a focused wave in which the hull girder collapses under once and repetitive focused waves.It was shown from the multiple collapse tests that the increase rate of collapse becomes higher once the load-carrying capacity enters the reduction path while the increase rate is lower before reaching the ultimate strength.
基金Project(2005k002-c-2) supported by the Science and Technology Development Program of Railways Department, China
文摘Mechanical behavior of concrete slab of large-span through tied-arch composite bridge was investigated by finite element analysis (FEA). Improved methods to decrease concrete stresses were discussed based on comparisons of different deck schemes, construction sequences and measures, and ratios of reinforcement. The results show that the mechanical behavior of concrete slab gets worse with the increase of composite regions between steel beams and concrete slab. The deck scheme with the minimum composite region is recommended on condition that both strength and stiffness of the bridge meet design demands under service loads. Adopting in-situ-place construction method, concrete is suggested to be cast after removing the full-supported frameworks under the bridge. Thus, the axial tensile force of concrete slab caused by the first stage dead load is eliminated. Preloading the bridge before concrete casting and removing the load after the concrete reaching its design strength, the stresses of concrete slab caused by the second stage dead load and live load are further reduced or even eliminated. At last, with a high ratio of reinforcement more than 3%, the concrete stresses decrease obviously.
基金Project(2016YFB0301402)supported by the National Key Research and Development Program of ChinaProject(CSU20151024)supported by the Innovation-driven Plan in Central South University,China
文摘Tribological behavior of Cu-15Ni-8Sn(mass fraction, %) alloy against GCr15 ring under various loads was investigated on a ring-on-block tester in oil lubrication. The results showed that the wear rate increased slowly from 1.7×10^(-7) to 9.8× 10^(-7) mm^3/mm under the load lower than 300 N, and then increased dramatically to the climax of 216×10^(-7) mm^3/mm under the load over 300 N, which indicated the transition of wear mechanism with the increase of applied load. The wear mechanism mainly was plastic deformation and abrasive wear under the load less than 300 N. As the applied load was more than 300 N, the wear mechanism of Cu-15Ni-8Sn alloy primarily was delamination wear. Besides, the transition can also be confirmed from the different morphologies of worn surface, subsurface and wear debris. It is distinctly indicated that the appearance of flaky debris at the applied load over 300 N may be a critical point for the change of wear mechanism.
基金Project(50908084)supported by the National Natural Science Foundation of ChinaProject(200815)supported by the Transportation Science and Technology Program of Hunan Province,ChinaProject(531107040620)supported by the Growth Plan for Young Teachers of Hunan University,China
文摘In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.
基金Project(50621062) supported by the National Natural Science Foundation of China
文摘Prestressed high-strength-concrete (PHC) tube-shaped pile is one of the recently used foundations for soft soil. The research on uplift resistance of PHC pile is helpful to the design of pile foundations. A field-scale test program was conducted to study the uplift behavior and load transfer mechanism of PHC piles in soft soil. The pullout load tests were divided into two groups with different diameters, and there were three piles in each group. A detailed discussion of the axial load transfer and pile skin resistance distribution was also included. It is found from the tests that the uplift capacity increases with increasing the diameter of pile. When the diameter of piles increases from 500 to 600 mm, the uplift load is increased by 51.2%. According to the load-displacement (Q-S) curves, all the piles do not reach the ultimate state at the maximum load. The experimental results show that the piles still have uplift bearing capacity.
文摘This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its eventual displacements on direction parallel to the construction axis. For the purpose of the experiment, geodetic measurement techniques and 2D DIC (digital image correlation) method (utilizing photographs of the object recorded with digital camera) were compared with regard to credibility, efficiency and accuracy. The vertical and horizontal displacements were monitored by tachometers measurements. The deformations in x-axis and y-axis on the wall surface was monitored by 2D DIC. It has been noticed that 2D DIC method is a surface method, continuous--not discreet. It allows for continuous observations of surface deformations, which is not possible in case of tachemetric measurements. Despite many advantages, the 2D DIC method lacks unambiguous evaluation of precision and relevance of designated displacements, which is rather significant for possibilities of utilization in technical control of large engineered objects. It should be also marked that the tachometric method is more reliable but is more laborious. Research of this type might comprise additional element for the assessment of the influence of dynamic loads, such as activating turbine water flow, onto the overall condition of the surveyed structure.
基金supported by National Natural Science Foundation of China(Grant Nos.51578413,51238009 and 41272291)the Fundamental Research Funds for the Central Universities
文摘The aim of this study is to numerically investigate the influence of particle breakage on the mechanical behavior of granular materials using a discrete element method(DEM). To enable particle crushing, non-crushable elementary particles are boned together to represents the granular aggregates which can be crushed when the external force exceeds its strength. The flaw of the aggregate was also modeled by randomly distributed void. Single particle crushing tests were carried out to determine the distribution of particle strength. The results of single particle crushing tests illustrate that the simulated single particle fracture strength and pattern agree well with the Weibull's distribution equation.Conventional oedometer tests, drained monotonic and cyclic triaxial tests were also carried out to investigate the crushing of the aggregates and the associated mechanical behaviors. The effect of confining pressure on the crushing of aggregates and the mechanical behavior was also analyzed. It was found that the peak stress and dilation decrease significantly when particle crushing was considered.The deformation behavior of the specimen is essentially controlled by two factors: particle rearrangement-induced dilation and particle crushing-induced contraction. The increase of permanent strain and the reduction of dilation were observed during cyclic loading and they tend to reach a stable state after a certain number of cycles. The crushing of aggregate is most significant in the first two cycles. The results also indicated that for the same axial strain the volumetric strain and the bound breakage in the cyclic loading tests are significantly larger than that in the monotonic loading tests,especially at high cyclic stress ratio.
基金National Key Project of Scientific and Technical Supporting Programs funded by Ministry of Science &Technology of China (No. 2006BAG04B00)
文摘The objective of this investigation was to study the behavior of deep pile caps and the ultimate load-carrying capacity. Four 1/10 scaled models of nine-pile caps were cast and tested on vertical loads to failure. The destruction shapes of pile caps,the correlation between load and displacement,and the internal stresses were analyzed systematically. The results demonstrated that the failures of all the four models are resulted from punching shear; the internal flow of the forces in nine-pile caps can be approximated by "strut-and-tie" model. Furthermore,the failure loads of these specimens were predicted by some of the present design methods and the calculated results were compared with the experimental loads. The comparative results also indicated that the "strut-and-tie" model is a more reasonable design method for deep pile caps design.
文摘The present contribution gives an overview about recent research on a TBC (thermal barrier coating) system consisted of (I) an intermetallic MCrAIY-alloy BC (bond coat) applied by VPS (vacuum plasma spraying) and (2) an YSZ (yttria stabilised zirconia) top coat APS (air plasma sprayed) at Forschungszentrum Juelich, Institute of Energy and Climate Research (IEK-2). The influence of high temperature dwell time, maximum and minimum temperature on crack growth kinetics during thermal cycling of such plasma sprayed TBCs is investigated using scanning electron microscopy and AE (acoustic emission) analysis. Thermocyclic life in terms of accumulated time at maximum temperature decreases with increasing high temperature dwell time and increases with increasing minimum temperature. AE analysis proves that crack growth mainly occurs during cooling at temperatures below the ductile-to-brittle transition temperature of the BC. Superimposed mechanical load cycles accelerate delamination crack growth and, in case of sufficiently high mechanical loadings, result in premature fatigue failure of the substrate. A life prediction model based on TGO growth kinetics and a fracture mechanics approach has been developed which accounts for the influence of maximum and minimum temperature as well as of high temperature dwell time with good accuracy in an extremely wide parameter range.
文摘Behavior of structural elements under blast loading is different from that under usual loading conditions that are considered in conventional structural deigns. Cantilever slabs are more vulnerable than most other elements under blast loads because of their shape. Understanding the blast behavior of cantilever slabs is useful in strengthening them against blast loads. In this paper, blast loading design envelopes for cantilever slabs are proposed using which, the blast behavior of conventional cantilever slabs can be identified. The paper describes the theories behind these envelopes and the way they can be applied to improve conventional designs. These envelopes have been prepared using numerical techniques. The theories used are accepted, verified and validated theories. The paper shows the possibility of converting a conventional cantilever slab design into impulsive regime design with minor adjustments to the structural design. It points out the importance of increasing slab thickness and controlling steel/concrete ratio for strengthening conventional cantilever slab designs and the requirement of reinforcement at top and bottom fibers.
基金supported by the National Natural Science Foundation of China(Grant Nos.50909059,51279222)
文摘Postbuckling behavior of the 3D braided rectangular plates subjected to uniaxial compression combined with transverse loads in thermal environments is presented.Based on a micro-macro-mechanical model,a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the plate.The material properties of the epoxy are expressed as a linear function of temperature.Uniform,linear and nonlinear temperature distributions through the thickness are involved.The lateral pressure(three types of transverse loads,i.e.transverse uniform load;transverse patch load over a central area;and transverse sinusoidal load)is first converted into an initial deflection and the initial geometric imperfection of the plate is taken into account.The governing equations are based on Reddy’s higher-order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity.Two cases of the in-plane boundary conditions are also taken into account.A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths of simply supported 3D braided rectangular plates.The results reveal that the temperature rise,geometric parameter,fiber volume fraction,braiding angle,the character of the in-plane boundary conditions and different types of initial transverse loads have a significant effect on the buckling and postbuckling behavior of the braided composite plates.
基金supported by the National Natural Science Foundation ofChina (Grant No. 11032008)the Shanxi Province Outstanding Innovation Project for Graduates (Grant No. 20113041)
文摘In order to well understand the mechanism of the mechanotransduction in bone, we propose a new model of transverse iso- tropic and poroelastic osteon cylinder considering Haversian fluid pressure. The analytical pore pressure and velocity solutions are obtained to examine the fluid transport behavior and pressure distribution in a loaded osteon on two different exterior sur- face cases. Case I is stress free and fully permeable and case I1 is impermeable. The following are the results obtained. (i) The Haversian fluid may not be ignored because it can enlarge the whole osteonal fluid pressure field, and it bears the external loads together with the solid skeleton. (ii) The increase of both axial strain amplitude and frequency can result in the increase of fluid pressure and velocity amplitudes, while in case II, the frequency has little effect on the fluid pressure amplitude. (iii) Under the same loading conditions, the pressure amplitude in case II is larger than that in case I, while the velocity amplitude is smaller than that in case I. This model permits the linking of the external loads to the osteonal fluid pressure and velocity, which may be a stimulus to the mechanotransduction of bone remodeling signals.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572049 and 11472036)
文摘The dynamic compressive deformation of cellular titanium with regularly distributed cylindrical pores is investigated to evaluate the effect of shock attenuation and obtain the shock Hugoniot relationship of the material. Dynamic compression experiments are conducted at room temperature using a single-stage light gas gun. The Hugoniot relations between shock wave velocity and particle velocity for the cellular titanium samples with porosities 20% and 30% are obtained. The shock response of the regular cellular titanium shows a clear wave attenuation effect. Numerical simulations are also conducted to supplement the experimental study.Inelastic deformation is observed in the samples using optical micrographs, indicating that the deformation of pores contributes significantly to the shock wave attenuation of the cellular titanium material.