Large thin walled cylindrical above ground tanks have become more susceptible to failure by buckling during earthquakes. In this study, three different geometries of tanks with H/D (height to diameter) ratios of 2.0...Large thin walled cylindrical above ground tanks have become more susceptible to failure by buckling during earthquakes. In this study, three different geometries of tanks with H/D (height to diameter) ratios of 2.0, 0.56, 1.0, and D/t (depth to thickness) ratios of 960.0, 1,706.67 and 640.0 respectively were analyzed for stability when subjected to the E1 Centro earthquake at the base. The Budiansky and Roth procedure was used to find the buckling loads when the tanks were empty and when they were filled with liquid up to 90% of their depth. Also, nonlinear time history analysis using ANSYS finite element computer program was performed. Analysis results show that the dynamic buckling occurs for empty tanks at very high PGA (peak ground accelerations) which are unrealistic even for major earthquakes. Furthermore, when the tanks filled with water up to 90% of its height, analysis results show that when the H/D ratio reduced by two times (i.e., from 2 to 1), the PGA for the buckling increased by six times (increase from 0.25g to 1 .Sg). Hence, H/D ratio plays an important role in the earthquake stability design of over ground steel tanks.展开更多
文摘Large thin walled cylindrical above ground tanks have become more susceptible to failure by buckling during earthquakes. In this study, three different geometries of tanks with H/D (height to diameter) ratios of 2.0, 0.56, 1.0, and D/t (depth to thickness) ratios of 960.0, 1,706.67 and 640.0 respectively were analyzed for stability when subjected to the E1 Centro earthquake at the base. The Budiansky and Roth procedure was used to find the buckling loads when the tanks were empty and when they were filled with liquid up to 90% of their depth. Also, nonlinear time history analysis using ANSYS finite element computer program was performed. Analysis results show that the dynamic buckling occurs for empty tanks at very high PGA (peak ground accelerations) which are unrealistic even for major earthquakes. Furthermore, when the tanks filled with water up to 90% of its height, analysis results show that when the H/D ratio reduced by two times (i.e., from 2 to 1), the PGA for the buckling increased by six times (increase from 0.25g to 1 .Sg). Hence, H/D ratio plays an important role in the earthquake stability design of over ground steel tanks.