A non-destructive, safe and practical strategy to produce high quality graphene in high yield is urgently required, since this would pave the way for a wide range of applications of graphene in the future. Here we pre...A non-destructive, safe and practical strategy to produce high quality graphene in high yield is urgently required, since this would pave the way for a wide range of applications of graphene in the future. Here we present a pH-responsive water-dispersible method for the exfoliation and functionalization of graphene by using lysozyme. The pH-responsive dispersion of graphene may be useful for the reversible assembly of multicomponent/multifunctional nanohybrid materials and nanoscale electronic devices. More importantly, composites can be easily constructed through the interactions between disulphide groups in lysozyme and gold nanoparticles (AuNPs). The resulting graphene-AuNPs composites show excellent catalytic activity towards reduction of o-nitroaniline by NaBH4. Since lysozyme is low cost and has antibacterial properties, and has been widely used in food preservation, medicine and the pharmaceutical industry, our approach may open a new scalable route for the manufacture of high-quality, nondestructive graphene for practical applications.展开更多
基金Acknowledgements Financial support was provided by the National Basic Research Program (973 Program) of China (Nos. 2011CB936004 and 2012CB720602), and theNational Natural Science Foundation of China (NSFC), Nos. (21210002 and 91213302).
文摘A non-destructive, safe and practical strategy to produce high quality graphene in high yield is urgently required, since this would pave the way for a wide range of applications of graphene in the future. Here we present a pH-responsive water-dispersible method for the exfoliation and functionalization of graphene by using lysozyme. The pH-responsive dispersion of graphene may be useful for the reversible assembly of multicomponent/multifunctional nanohybrid materials and nanoscale electronic devices. More importantly, composites can be easily constructed through the interactions between disulphide groups in lysozyme and gold nanoparticles (AuNPs). The resulting graphene-AuNPs composites show excellent catalytic activity towards reduction of o-nitroaniline by NaBH4. Since lysozyme is low cost and has antibacterial properties, and has been widely used in food preservation, medicine and the pharmaceutical industry, our approach may open a new scalable route for the manufacture of high-quality, nondestructive graphene for practical applications.