Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal commun...Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.展开更多
[Objective] This study aimed to explore the pathotype structure of Magnaporthe grisea in Chongyang and Yuan'an in Hubei Province,China.[Method] From the rice-growing fields of Chongyang and Yuan'an in Hubei Pr...[Objective] This study aimed to explore the pathotype structure of Magnaporthe grisea in Chongyang and Yuan'an in Hubei Province,China.[Method] From the rice-growing fields of Chongyang and Yuan'an in Hubei Province where rice blast occurs frequently,60 isolates which were pathotyped against two sets of host differentials:Chinese host differentials and CO39 NILs,were obtained.Then,20 pathotypes with the six indica host differentials(CO39 NILs) were observed,while 13 pathotypes in four race groups were observed out of the same single spore isolates with Chinese host differentials which consists of three indica cultivars and four japonica cultivars.The diversity of the pathotypes of M.grisea populations tested by CO39 NILs was 2.54 and the pathotype 137.1 occurred at predominantly high frequency(21.67%).The diversity of physiological races of M.grisea populations tested by Chinese host differentials was 1.22 and the race group ZA occurred at predominantly high frequency(73.33%).The diversity of physiological races of M.grisea in Chongyang and Yuan'an were also calculated.Overall,the diversity of pathotypes of M.grisea in Yuan'an was higher than that in Chongyang with the two sets of the host differentials.[Conclusion] This study provided current information on the pathotype spectrum of M.grisea populations in the rice fields of Hubei Province to allow the formulation of viable strategies for blast resistance breeding programs in Hubei Province.展开更多
The dynamics of rhizosphere microbial communities is important for plant health and productivity, and can be influenced by soil type, plant species or genotype, and plant growth stage. A pot experiment was carried out...The dynamics of rhizosphere microbial communities is important for plant health and productivity, and can be influenced by soil type, plant species or genotype, and plant growth stage. A pot experiment was carried out to examine the dynamics of microbial communities in the rhizosphere of two soybean genotypes grown in a black soil in Northeast China with a long history of soybean cultivation. The two soybean genotypes, Beifeng 11 and Hai 9731, differing in productivity were grown in a mixture of black soil and siliceous sand. The bacterial communities were compared at three zone locations including rhizoplane, rhizosphere, and bulk soil at the third node (V3), early flowering (R1), and early pod (R3) stages using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DCGE) of 16S rDNA. The results of principal component analyses (PCA) showed that the bacterial community structure changed with growth stage. Spatially, the bacterial communities in the rhizoplane and rhizosphere were significantly different from those in the bulk soil. Nevertheless, the bacterial communities in the rhizoplane were distinct from those in the rhizosphere at the V3 stage, while no obvious differences were found at the R1 and R3 stages. For the two genotypes, the bacterial community structure was similar at the V3 stage, but differed at the R1 and R3 stages. In other words, some bacterial populations became dominant and some others recessive at the two later stages, which contributed to the variation of the bacterial community between the two genotypes. These results suggest that soybean plants can modify the rhizosphere bacterial communities in the black soil, and there existed genotype-specific bacterial populations in the rhizospbere, which may be related to soybean productivity.展开更多
AIM: To investigate the effect of moxibustion on intestinal flora and release of interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α) from the colon in rat with ulcerative colitis (UC). METHODS: A rat model of...AIM: To investigate the effect of moxibustion on intestinal flora and release of interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α) from the colon in rat with ulcerative colitis (UC). METHODS: A rat model of UC was established by local stimulation of the intestine with supernatant from colonic contents harvested from human UC patients. A total of 40 male Sprague-Dawley rats were randomly divided into the following groups: normal (sham), model (UC), herb-partition moxibustion (HPM-treated), and positive control sulfasalazine (SA-treated). Rats treated with HPM received HPM at acupuncture points ST25 and RN6, once a day for 15 min, for a total of 8 d. Rats in the SA group were perfused with SA twice a day for 8 d. The colonic histopathology was observed by hematoxylin-eosin. The levels of intestinal flora, including Bifidobacterium, Lactobacillus, Escherichia coli (E. coli), and Bacteroides fragilis (B. fragilis), were tested by real-time quantitative polymerase chain reaction to detect bacterial 16S rRNA/DNA in order to determine DNA copy numbers of each specific species. Immunohistochemical assays were used to observe the expression of TNF-α and IL-12 in the rat colons. RESULTS: HPM treatment inhibited immunopathology in colonic tissues of UC rats; the general morphological score and the immunopathological score were significantly decreased in the HPM and SA groups compared with the model group [3.5 (2.0-4.0), 3.0 (1.5-3.5) vs 6.0 (5.5-7.0), P < 0.05 for the general morphological score, and 3.00 (2.00-3.50), 3.00 (2.50-3.50) vs 5.00 (4.50-5.50), P < 0.01 for the immunopathological score]. As measured by DNA copy number, we found that Bifidobacterium and Lactobacillus, which are associated with a healthy colon, were significantly higher in the HPM and SA groups than in the model group (1.395 ± 1.339, 1.461 ± 1.152 vs 0.045 ± 0.036, P < 0.01 for Bifidobacterium, and 0.395 ± 0.325, 0.851 ± 0.651 vs 0.0015 ± 0.0014, P < 0.01 for Lactobacillus). On the other hand, E. coli and B. fragilis, which are associated with an inflamed colon, were significantly lower in the HPM and SA groups than in the model group (0.244 ± 0.107, 0.628 ± 0.257 vs 1.691 ± 0.683, P < 0.01 for E. coli, and 0.351 ± 0.181, 0.416 ± 0.329 vs 1.285 ± 1.039, P < 0.01 for B. fragilis). The expression of TNF-α and IL-12 was decreased after HPM and SA treatment as compared to UC model alone (4970.81 ± 959.78, 6635.45 ± 1135.16 vs 12333.81 ± 680.79, P < 0.01 for TNF-α, and 5528.75 ± 1245.72, 7477.38 ± 1259.16 vs 12550.29 ± 1973.30, P < 0.01 for IL-12). CONCLUSION: HPM treatment can regulate intestinal flora and inhibit the expression of TNF-α and IL-12 in the colon tissues of UC rats, indicating that HPM can improve colonic immune response.展开更多
Objective To investigate changes in intestinal microflora in patients with chronic severe hepatitis (CSH), and their role in this life-threatening disease.Methods We classified nineteen patients with chronic severe ...Objective To investigate changes in intestinal microflora in patients with chronic severe hepatitis (CSH), and their role in this life-threatening disease.Methods We classified nineteen patients with chronic severe hepatitis as the CSH group, thirty patients with chronic hepatitis (CH) as the CH group and thirty-one healthy volunteer as the control group. Fecal flora from all subjects were analyzed. Concentrations of plasma endotoxin, serum cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and liver function were assessed.Results The number of fecal bifidobacterium (P<0.001, P<0.05 respectively), as well as bacteroidaceae (P<0.001, P<0.01 respectively) were significantly deceased in patients with chronic severe hepatitis compared with the CH and control groups, while the number of enterobacteriaceae (P<0.001, P<0.05 respectively) and yeasts (P<0.01, P<0.05 respectively) were significantly increased. Levels of plasma endotoxin, serum TNF-α, IL-1β and total bilirubin (TBiL) were significantly increased in the CSH group. The concentration of endotoxin positively correlated with levels of both TNF-α, IL-1β and TBiL (P<0.001, respectively). Levels of plasma endotoxin were positively correlated with the number of fecal enterobacteriaceae and negatively correlated with bifidobacterium (P<0.05, P<0.001, respectively).Conclusion Intestinal flora in patients with chronic severe hepatitis were severely disturbed and gut mircobiological colonization resistance was impaired. Changes in intestinal flora may have a pivotal role in both the elevation of plasma endotoxin and further hepatic lesions resulting in liver failure.展开更多
Background and aim:Gutmicrobiotamay contribute to regulate colonicmotility,which is involved in the etiology of constipation.Fecalmicrobiota transplantation(FMT)has been demonstrated to restore intestinal homeostasis....Background and aim:Gutmicrobiotamay contribute to regulate colonicmotility,which is involved in the etiology of constipation.Fecalmicrobiota transplantation(FMT)has been demonstrated to restore intestinal homeostasis.The aimof this study was to evaluate the clinical outcomes and prognostic factors of FMT for the treatment of slow transit constipation(STC).Methods:Fifty-two patients with STC received standardized FMT and were followed up for 6 months.Bowel habit,colonic transit time,constipation-related symptoms(PAC-SYM score),quality of life(PAC-QOL score),treatment satisfaction scores and adverse events were monitored.The primary efficacy endpoint was the proportion of patients having on average three or more complete spontaneous bowel movements(CSBMs)per week.Results:The primary efficacy endpoint was achieved in 50.0%,38.5%and 32.7%of patients over week intervals 3–4,9–12 and 21–24,respectively(P<0.01 for all comparisons).Significant improvements were also observed in other bowel movement assessments,colonic transit time,constipation-related symptoms and quality of life;but all improvements diminished at weeks 12 and 24.Incompleteness of evacuation served as the only factor associated with efficacy.No serious treatmentrelated adverse events were observed.Conclusion:This study suggested FMT was effective and safe for STC,while a late loss of efficacy was also observed.A lower degree of sensation of incompleteness predicted a better outcome.展开更多
基金financially supported by the National Key Technology R&D Program (Grant No. 2007BAC18B03)the Sichuan Provincial Key Technology R&D Program (Grant No. 2012SZ0045)
文摘Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.
基金Supported by the Key Project of the National 11th Five-Year Plan of China (2006BADO8A04-06)
文摘[Objective] This study aimed to explore the pathotype structure of Magnaporthe grisea in Chongyang and Yuan'an in Hubei Province,China.[Method] From the rice-growing fields of Chongyang and Yuan'an in Hubei Province where rice blast occurs frequently,60 isolates which were pathotyped against two sets of host differentials:Chinese host differentials and CO39 NILs,were obtained.Then,20 pathotypes with the six indica host differentials(CO39 NILs) were observed,while 13 pathotypes in four race groups were observed out of the same single spore isolates with Chinese host differentials which consists of three indica cultivars and four japonica cultivars.The diversity of the pathotypes of M.grisea populations tested by CO39 NILs was 2.54 and the pathotype 137.1 occurred at predominantly high frequency(21.67%).The diversity of physiological races of M.grisea populations tested by Chinese host differentials was 1.22 and the race group ZA occurred at predominantly high frequency(73.33%).The diversity of physiological races of M.grisea in Chongyang and Yuan'an were also calculated.Overall,the diversity of pathotypes of M.grisea in Yuan'an was higher than that in Chongyang with the two sets of the host differentials.[Conclusion] This study provided current information on the pathotype spectrum of M.grisea populations in the rice fields of Hubei Province to allow the formulation of viable strategies for blast resistance breeding programs in Hubei Province.
基金Project supported by the National Natural Science Foundation of China (Nos. 40671099 and 40701084)the Director Program of the Key Laboratory of Soybean Biology of Ministry of Education, China (No. SB05B02)
文摘The dynamics of rhizosphere microbial communities is important for plant health and productivity, and can be influenced by soil type, plant species or genotype, and plant growth stage. A pot experiment was carried out to examine the dynamics of microbial communities in the rhizosphere of two soybean genotypes grown in a black soil in Northeast China with a long history of soybean cultivation. The two soybean genotypes, Beifeng 11 and Hai 9731, differing in productivity were grown in a mixture of black soil and siliceous sand. The bacterial communities were compared at three zone locations including rhizoplane, rhizosphere, and bulk soil at the third node (V3), early flowering (R1), and early pod (R3) stages using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DCGE) of 16S rDNA. The results of principal component analyses (PCA) showed that the bacterial community structure changed with growth stage. Spatially, the bacterial communities in the rhizoplane and rhizosphere were significantly different from those in the bulk soil. Nevertheless, the bacterial communities in the rhizoplane were distinct from those in the rhizosphere at the V3 stage, while no obvious differences were found at the R1 and R3 stages. For the two genotypes, the bacterial community structure was similar at the V3 stage, but differed at the R1 and R3 stages. In other words, some bacterial populations became dominant and some others recessive at the two later stages, which contributed to the variation of the bacterial community between the two genotypes. These results suggest that soybean plants can modify the rhizosphere bacterial communities in the black soil, and there existed genotype-specific bacterial populations in the rhizospbere, which may be related to soybean productivity.
基金Supported by National Natural Science Foundation of China, No. 81001549National Basic Research Program of China (973 program), No. 2009CB522900+1 种基金Shanghai Health System of Outstanding Young Talent Cultivation Program, No. XYQ2011068Shanghai Rising-Star Program, No. 10QA1406100
文摘AIM: To investigate the effect of moxibustion on intestinal flora and release of interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α) from the colon in rat with ulcerative colitis (UC). METHODS: A rat model of UC was established by local stimulation of the intestine with supernatant from colonic contents harvested from human UC patients. A total of 40 male Sprague-Dawley rats were randomly divided into the following groups: normal (sham), model (UC), herb-partition moxibustion (HPM-treated), and positive control sulfasalazine (SA-treated). Rats treated with HPM received HPM at acupuncture points ST25 and RN6, once a day for 15 min, for a total of 8 d. Rats in the SA group were perfused with SA twice a day for 8 d. The colonic histopathology was observed by hematoxylin-eosin. The levels of intestinal flora, including Bifidobacterium, Lactobacillus, Escherichia coli (E. coli), and Bacteroides fragilis (B. fragilis), were tested by real-time quantitative polymerase chain reaction to detect bacterial 16S rRNA/DNA in order to determine DNA copy numbers of each specific species. Immunohistochemical assays were used to observe the expression of TNF-α and IL-12 in the rat colons. RESULTS: HPM treatment inhibited immunopathology in colonic tissues of UC rats; the general morphological score and the immunopathological score were significantly decreased in the HPM and SA groups compared with the model group [3.5 (2.0-4.0), 3.0 (1.5-3.5) vs 6.0 (5.5-7.0), P < 0.05 for the general morphological score, and 3.00 (2.00-3.50), 3.00 (2.50-3.50) vs 5.00 (4.50-5.50), P < 0.01 for the immunopathological score]. As measured by DNA copy number, we found that Bifidobacterium and Lactobacillus, which are associated with a healthy colon, were significantly higher in the HPM and SA groups than in the model group (1.395 ± 1.339, 1.461 ± 1.152 vs 0.045 ± 0.036, P < 0.01 for Bifidobacterium, and 0.395 ± 0.325, 0.851 ± 0.651 vs 0.0015 ± 0.0014, P < 0.01 for Lactobacillus). On the other hand, E. coli and B. fragilis, which are associated with an inflamed colon, were significantly lower in the HPM and SA groups than in the model group (0.244 ± 0.107, 0.628 ± 0.257 vs 1.691 ± 0.683, P < 0.01 for E. coli, and 0.351 ± 0.181, 0.416 ± 0.329 vs 1.285 ± 1.039, P < 0.01 for B. fragilis). The expression of TNF-α and IL-12 was decreased after HPM and SA treatment as compared to UC model alone (4970.81 ± 959.78, 6635.45 ± 1135.16 vs 12333.81 ± 680.79, P < 0.01 for TNF-α, and 5528.75 ± 1245.72, 7477.38 ± 1259.16 vs 12550.29 ± 1973.30, P < 0.01 for IL-12). CONCLUSION: HPM treatment can regulate intestinal flora and inhibit the expression of TNF-α and IL-12 in the colon tissues of UC rats, indicating that HPM can improve colonic immune response.
文摘Objective To investigate changes in intestinal microflora in patients with chronic severe hepatitis (CSH), and their role in this life-threatening disease.Methods We classified nineteen patients with chronic severe hepatitis as the CSH group, thirty patients with chronic hepatitis (CH) as the CH group and thirty-one healthy volunteer as the control group. Fecal flora from all subjects were analyzed. Concentrations of plasma endotoxin, serum cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) and liver function were assessed.Results The number of fecal bifidobacterium (P<0.001, P<0.05 respectively), as well as bacteroidaceae (P<0.001, P<0.01 respectively) were significantly deceased in patients with chronic severe hepatitis compared with the CH and control groups, while the number of enterobacteriaceae (P<0.001, P<0.05 respectively) and yeasts (P<0.01, P<0.05 respectively) were significantly increased. Levels of plasma endotoxin, serum TNF-α, IL-1β and total bilirubin (TBiL) were significantly increased in the CSH group. The concentration of endotoxin positively correlated with levels of both TNF-α, IL-1β and TBiL (P<0.001, respectively). Levels of plasma endotoxin were positively correlated with the number of fecal enterobacteriaceae and negatively correlated with bifidobacterium (P<0.05, P<0.001, respectively).Conclusion Intestinal flora in patients with chronic severe hepatitis were severely disturbed and gut mircobiological colonization resistance was impaired. Changes in intestinal flora may have a pivotal role in both the elevation of plasma endotoxin and further hepatic lesions resulting in liver failure.
基金supported by the National Natural Science Foundation of China(81670493)the National Gastroenterology Research Project(2015BAI13B07).
文摘Background and aim:Gutmicrobiotamay contribute to regulate colonicmotility,which is involved in the etiology of constipation.Fecalmicrobiota transplantation(FMT)has been demonstrated to restore intestinal homeostasis.The aimof this study was to evaluate the clinical outcomes and prognostic factors of FMT for the treatment of slow transit constipation(STC).Methods:Fifty-two patients with STC received standardized FMT and were followed up for 6 months.Bowel habit,colonic transit time,constipation-related symptoms(PAC-SYM score),quality of life(PAC-QOL score),treatment satisfaction scores and adverse events were monitored.The primary efficacy endpoint was the proportion of patients having on average three or more complete spontaneous bowel movements(CSBMs)per week.Results:The primary efficacy endpoint was achieved in 50.0%,38.5%and 32.7%of patients over week intervals 3–4,9–12 and 21–24,respectively(P<0.01 for all comparisons).Significant improvements were also observed in other bowel movement assessments,colonic transit time,constipation-related symptoms and quality of life;but all improvements diminished at weeks 12 and 24.Incompleteness of evacuation served as the only factor associated with efficacy.No serious treatmentrelated adverse events were observed.Conclusion:This study suggested FMT was effective and safe for STC,while a late loss of efficacy was also observed.A lower degree of sensation of incompleteness predicted a better outcome.