Total yields of vine tip of seven varieties of Leaf-vegetable sweetpotato during 2006-2007 were investigated; proportions of the weights of leaf, leaf stalk and stem in total vine tip yield and their changes among var...Total yields of vine tip of seven varieties of Leaf-vegetable sweetpotato during 2006-2007 were investigated; proportions of the weights of leaf, leaf stalk and stem in total vine tip yield and their changes among varieties and during topping stages were studied. The results showed that vine tip yields of sweetpotato were significantly different among either varieties or topping stages; leaf yield accounted for about 51% of total vine yield, and changes in leaf yield among topping stages were higher than that among varieties; while yields of leaf stalk and stem each accounted for 25% of total vine tip yield, their changes among varieties were higher than those among topping stages. These results revealed the yield composition of vine tip of Leaf-vegetable sweetpotato, which provided scientific references for breeding and cultivating new Leaf-vegetable sweetpotato variety and its industrialization.展开更多
In this study, Bacil us amyloliquefaciens A3 was continual y incubated in shake fIasks contalning wastewater from sweet potato starch production as an ef-fective biofertiIizer for cuItivation of Brassica juncea var. m...In this study, Bacil us amyloliquefaciens A3 was continual y incubated in shake fIasks contalning wastewater from sweet potato starch production as an ef-fective biofertiIizer for cuItivation of Brassica juncea var. multiceps(XueIihong). Based on pot experiments in the greenhouse, the effects of chemical fertiIizers (CN), biofertiIizer (BF), inactivated broth (BI), starch wastewater (SW) and the combination of biofertiIizer and chemical fertiIizer (BC) on the yield, NO3- content and NO2- con-tent of XueIihong, soiI physicochemical properties and N2O emission were investi-gated. The resuIts showed that the yield of XueIihong in BC and CN treatments was improved by five times compared with CK; BF and SW treatments had insignifi-cant impact on the yield of XueIihong. Compared with CN treatment, BCL treatment exhibited simiIar improving effects on the yield of XueIihong, in which NO3- content of XueIihong and soiI was reduced by 16.4%-73.6% and 22%-29%, which reduced the risk of nitrogen eIuviations in soiI; average N2O fIux (FPV30) in BCL treatment was reduced by 58.3%-73.1% compared with CN treatment. In concIusion, B. amy-loliquefaciens is a feasibIe Iow-cost biofertiIizer for sustalnabIe vegetabIe farming with a great potential for starch wastewater utiIization.展开更多
To reduce the nitrate leaching risk after potato (Solanum tuberosum L.) harvest and improve nitrogen fertilizer-use efficiency, a potato-cabbage double cropping system (DCS) was established at Hetao, North China, ...To reduce the nitrate leaching risk after potato (Solanum tuberosum L.) harvest and improve nitrogen fertilizer-use efficiency, a potato-cabbage double cropping system (DCS) was established at Hetao, North China, an arid area with irrigated land. A two-year field experiment demonstrated that planting early-maturing potato cultivar under plastic mulch shortened its growth period by 14 d and allowed a second crop of cabbage to scavenge the soil residual NO^--N to a depth of 160 cm, substantially reducing the risk of nitrate leaching into groundwater. The yearly total N uptake in DCS was about 110 kg ha-1 more than that in the conventional cropping system (CCS), i.e., mono potato planting. This accounted for apparent nitrogen recovery (ANR) improvement of 16.90%-26.57% in the DCS as compared to that in the CCS for both years. As a result, the soil residual NO3-N in the 0-160 cm soil profile in the DCS was lower than that in the CCS. The solar energy-use efficiency and soil-use efficiency were also substantially increased with DCS.展开更多
基金Supported by National Plans to Public Sector (Agriculture) (nyhyzx 07-012-14)Animal and Crop Fine Variety Innovation Program of Chongqing City during the Eleventh Five-year Plan,China (10379)~~
文摘Total yields of vine tip of seven varieties of Leaf-vegetable sweetpotato during 2006-2007 were investigated; proportions of the weights of leaf, leaf stalk and stem in total vine tip yield and their changes among varieties and during topping stages were studied. The results showed that vine tip yields of sweetpotato were significantly different among either varieties or topping stages; leaf yield accounted for about 51% of total vine yield, and changes in leaf yield among topping stages were higher than that among varieties; while yields of leaf stalk and stem each accounted for 25% of total vine tip yield, their changes among varieties were higher than those among topping stages. These results revealed the yield composition of vine tip of Leaf-vegetable sweetpotato, which provided scientific references for breeding and cultivating new Leaf-vegetable sweetpotato variety and its industrialization.
基金Supported by Key Research Program of the Chinese Academy of Sciences(KZZD-EW-09-3,KZZD-EW-11-03)National Science and Technology Major Project(2014ZX07204-005)Special Fund of the National Academy Alliance(2012-1)~~
文摘In this study, Bacil us amyloliquefaciens A3 was continual y incubated in shake fIasks contalning wastewater from sweet potato starch production as an ef-fective biofertiIizer for cuItivation of Brassica juncea var. multiceps(XueIihong). Based on pot experiments in the greenhouse, the effects of chemical fertiIizers (CN), biofertiIizer (BF), inactivated broth (BI), starch wastewater (SW) and the combination of biofertiIizer and chemical fertiIizer (BC) on the yield, NO3- content and NO2- con-tent of XueIihong, soiI physicochemical properties and N2O emission were investi-gated. The resuIts showed that the yield of XueIihong in BC and CN treatments was improved by five times compared with CK; BF and SW treatments had insignifi-cant impact on the yield of XueIihong. Compared with CN treatment, BCL treatment exhibited simiIar improving effects on the yield of XueIihong, in which NO3- content of XueIihong and soiI was reduced by 16.4%-73.6% and 22%-29%, which reduced the risk of nitrogen eIuviations in soiI; average N2O fIux (FPV30) in BCL treatment was reduced by 58.3%-73.1% compared with CN treatment. In concIusion, B. amy-loliquefaciens is a feasibIe Iow-cost biofertiIizer for sustalnabIe vegetabIe farming with a great potential for starch wastewater utiIization.
基金Supported by the Inner Mongolia Agricultural University Innovation Team Foundation for Potato,China (No.NDPYTD2010-5)the Ministry of Agriculture Special Industry Foundation of China (No. 201103003)the Hong Kong Research Grants Council of China (No. HKBU 262809)
文摘To reduce the nitrate leaching risk after potato (Solanum tuberosum L.) harvest and improve nitrogen fertilizer-use efficiency, a potato-cabbage double cropping system (DCS) was established at Hetao, North China, an arid area with irrigated land. A two-year field experiment demonstrated that planting early-maturing potato cultivar under plastic mulch shortened its growth period by 14 d and allowed a second crop of cabbage to scavenge the soil residual NO^--N to a depth of 160 cm, substantially reducing the risk of nitrate leaching into groundwater. The yearly total N uptake in DCS was about 110 kg ha-1 more than that in the conventional cropping system (CCS), i.e., mono potato planting. This accounted for apparent nitrogen recovery (ANR) improvement of 16.90%-26.57% in the DCS as compared to that in the CCS for both years. As a result, the soil residual NO3-N in the 0-160 cm soil profile in the DCS was lower than that in the CCS. The solar energy-use efficiency and soil-use efficiency were also substantially increased with DCS.