4-Tert-butyl-2-(α-methylbenzyl) phenol (t-BAMBP) was used in cyclohexane in the extraction of rubidium from brine sources containing lithium. The effect of t-BAMBP concentration and aqueous phase pH on the rubidi...4-Tert-butyl-2-(α-methylbenzyl) phenol (t-BAMBP) was used in cyclohexane in the extraction of rubidium from brine sources containing lithium. The effect of t-BAMBP concentration and aqueous phase pH on the rubidium and lithium extraction equilibrium was studied, t-BAMBP/cyclohexane was efficient and selective for rubidium extraction with optimal operating conditions being pH of 13.0 and initial t-BAMBP concentration of 1.0 mol.L-1. The stoichiometry of the complex of α-BAMBP with rubidium is 4:1. The apparent extraction equilibrium constant of rubidium was calculated by fitting the experimental data.展开更多
Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A mode...Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.展开更多
This paper makes a study of some technical and engineering aspects by using C2 + hydrocarbon separation facility at Guangdong Dapeng liquefied natural gas (GDLNG) terminal. In the C2+ hydrocarbon extraction proces...This paper makes a study of some technical and engineering aspects by using C2 + hydrocarbon separation facility at Guangdong Dapeng liquefied natural gas (GDLNG) terminal. In the C2+ hydrocarbon extraction process, the cold energy contained in LNG will be utilized. In order to ensure the optimum operating conditions of the temlinal and C2 + hydrocarbon extraction facility by optimizing the current operating processes of the terminal, the C2 + hydrocarbon extraction facility construction plan is proposed. We conducted numerous calculations and simulations using such specific analysis software as PRO II 〈 version 7.0 〉. Additionally available flow data are used to verify the cyclic send-out rates from the terminal, thus establishing the current and future projected load factors. This study is intended to make sure that GDLNG can continue to supply gas via the pipeline system safely without interruptions and most significantly solves the effects of flow fluctuations at the terminal gasification send-out facility on the hydrocarbons extraction, ensuring optimum pipeline operations and ensuring safe and effective means for such C2+ hydrocarbons extraction process as well. At the same time, the terminal is also in the optimum operation condition. This is very significant to the terminal safety operation and the energy conservation and emission reduction.展开更多
基金Supported by the research fund for the Doctoral Program of Education Ministry of China(20120002110098)
文摘4-Tert-butyl-2-(α-methylbenzyl) phenol (t-BAMBP) was used in cyclohexane in the extraction of rubidium from brine sources containing lithium. The effect of t-BAMBP concentration and aqueous phase pH on the rubidium and lithium extraction equilibrium was studied, t-BAMBP/cyclohexane was efficient and selective for rubidium extraction with optimal operating conditions being pH of 13.0 and initial t-BAMBP concentration of 1.0 mol.L-1. The stoichiometry of the complex of α-BAMBP with rubidium is 4:1. The apparent extraction equilibrium constant of rubidium was calculated by fitting the experimental data.
基金Supported by the National Natural Science Foundation of China.
文摘Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.
文摘This paper makes a study of some technical and engineering aspects by using C2 + hydrocarbon separation facility at Guangdong Dapeng liquefied natural gas (GDLNG) terminal. In the C2+ hydrocarbon extraction process, the cold energy contained in LNG will be utilized. In order to ensure the optimum operating conditions of the temlinal and C2 + hydrocarbon extraction facility by optimizing the current operating processes of the terminal, the C2 + hydrocarbon extraction facility construction plan is proposed. We conducted numerous calculations and simulations using such specific analysis software as PRO II 〈 version 7.0 〉. Additionally available flow data are used to verify the cyclic send-out rates from the terminal, thus establishing the current and future projected load factors. This study is intended to make sure that GDLNG can continue to supply gas via the pipeline system safely without interruptions and most significantly solves the effects of flow fluctuations at the terminal gasification send-out facility on the hydrocarbons extraction, ensuring optimum pipeline operations and ensuring safe and effective means for such C2+ hydrocarbons extraction process as well. At the same time, the terminal is also in the optimum operation condition. This is very significant to the terminal safety operation and the energy conservation and emission reduction.