Grain cooking and nutrient qualities are the most important components of rice (Oryza sativa L.) quality. A doubled haploid (DH) population from a cross between two japonica cultivars was used to examine the pheno...Grain cooking and nutrient qualities are the most important components of rice (Oryza sativa L.) quality. A doubled haploid (DH) population from a cross between two japonica cultivars was used to examine the phenotypic values and potential QTLs for the quality traits. The cooking and nutrient quality traits, including the amylose content (AC), the gel consistency (CJC), the gelatinization temperature (GT), and the protein content (PC), in rice grown under upland and lowland environments were evaluated. Significant differences for AC, GC, GT, and PC between upland and lowland environments were detected. The phenotypic values of all four traits were higher under upland environment than lowland environment. The value of PC under upland environment was significantly higher (by 37.9%) than that under lowland environment. This suggests that upland cultivation had large effect on both cooking and nutrient qualifies. A total of seven QTLs and twelve pairs of QTLs were detected to have significant additive and epistatic effects for the four traits. Significant Q x E interaction effects of two QTLs and two pairs of QTLs were also discovered. The general contribution of additive QTLs ranged from 1.91% to 19.77%. The Q × E interactions of QTLs QGt3 and QAc6 accounted for 8.99% and 47.86% of the phenotypic variation, respectively, whereas those of the 2 pairs of epistatic QTLs, QAc6-QAcllb and QAc8-QAc9, accounted for 32.54% and 11.82%, respectively. Five QTLs QGt6b, QGt8, QGt11, QGcl, and QPc2, which had relatively high general contribution and no Q x E interactions, were selected to facilitate the upland rice grain quality breeding.展开更多
生物多样性是人类赖以生存的基础,但由于受到人类活动以及全球变化的影响正加速丧失,这对全球生态系统造成巨大威胁.近年来,生物多样性与生态系统功能关系(biodiversity and ecosystem functioning,BEF)已经成为生物多样性保护和气候变...生物多样性是人类赖以生存的基础,但由于受到人类活动以及全球变化的影响正加速丧失,这对全球生态系统造成巨大威胁.近年来,生物多样性与生态系统功能关系(biodiversity and ecosystem functioning,BEF)已经成为生物多样性保护和气候变化领域关注的热点问题之一,并由早期的单一营养级多样性与单个生态系统功能关系,发展到近年来的多营养级生物多样性与生态系统多功能性关系.本文介绍了多营养级生物多样性以及生态系统多功能性的基础概念,回顾了多营养级生物多样性与陆地生态系统多功能性研究的发展历程,并系统归纳了该领域近十年的重要研究进展.在此基础上,提出未来需要重点关注的3个方面:(ⅰ)基于控制实验的驱动机制研究;(ⅱ)地下多营养级生物多样性与生态系统多功能性的关系;(ⅲ)多营养级生物多样性与生态系统多功能性关系随时间尺度的变化.最后,本文呼吁不同研究方向的学者未来应加强合作并强调了开展整合性工作的必要性.展开更多
The southem Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an eco...The southem Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. Atrophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to 〉V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.展开更多
The Interaction between potassium and moisture during the growth of and nutrient uptake by rapeseed plants grown on K-deficient soils has been investigated in this Study. The results show that the dry weight of the ab...The Interaction between potassium and moisture during the growth of and nutrient uptake by rapeseed plants grown on K-deficient soils has been investigated in this Study. The results show that the dry weight of the above-ground parts of the plant appears to be somewhat reduced when the volume water content of the soil remains 0.15 for 3 successive days. As the shortage in the soil water continues, the height of the plant root and the permeability of the root plasmalemma are markedly affected; the stem thickness and leaf area are reduced. However, K application can increase the dry matter weight of the above-ground parts, the thickness of the stem, and the area of the leaf. Application of K can also maintain a comparatively low water potential(ψ) and a comparatively high moisture content in the leaves, thus increasing the drought-resisting ability of the plant. When the volume water content of the soil is raised to 0.30, leaf yellowing as a symptom of nutrient deficiency appears on rapeseed plants grown on K-deficient soils. With increase in soil moisture content, the Ca concentration of the aerial parts of the rapeseed plant without K application increases while the K concentration decreases. Both K application and the soil moisture regime have very little effect on the Mg concentration in the plant. Under soil moisture stress, the nitrogen content and total amount of alnino acids in rape leaves increases; and thus more proline and glutamic acid is formed. On the other hand, the impact of soil moisture on plant's dry matter is governed by the status of potassium nutrition. On soils with low K, the moisture content has very little effect on yield; when K fertilizer is applied, however, the moisture content shows a very significant effect on yield increase.展开更多
基金This work was supported by the State Key Basic Research and Development Plan of China (973)the Hi-Tech Research and De-velopment Program of China (863) National Natural Science Foundation of China.
文摘Grain cooking and nutrient qualities are the most important components of rice (Oryza sativa L.) quality. A doubled haploid (DH) population from a cross between two japonica cultivars was used to examine the phenotypic values and potential QTLs for the quality traits. The cooking and nutrient quality traits, including the amylose content (AC), the gel consistency (CJC), the gelatinization temperature (GT), and the protein content (PC), in rice grown under upland and lowland environments were evaluated. Significant differences for AC, GC, GT, and PC between upland and lowland environments were detected. The phenotypic values of all four traits were higher under upland environment than lowland environment. The value of PC under upland environment was significantly higher (by 37.9%) than that under lowland environment. This suggests that upland cultivation had large effect on both cooking and nutrient qualifies. A total of seven QTLs and twelve pairs of QTLs were detected to have significant additive and epistatic effects for the four traits. Significant Q x E interaction effects of two QTLs and two pairs of QTLs were also discovered. The general contribution of additive QTLs ranged from 1.91% to 19.77%. The Q × E interactions of QTLs QGt3 and QAc6 accounted for 8.99% and 47.86% of the phenotypic variation, respectively, whereas those of the 2 pairs of epistatic QTLs, QAc6-QAcllb and QAc8-QAc9, accounted for 32.54% and 11.82%, respectively. Five QTLs QGt6b, QGt8, QGt11, QGcl, and QPc2, which had relatively high general contribution and no Q x E interactions, were selected to facilitate the upland rice grain quality breeding.
文摘生物多样性是人类赖以生存的基础,但由于受到人类活动以及全球变化的影响正加速丧失,这对全球生态系统造成巨大威胁.近年来,生物多样性与生态系统功能关系(biodiversity and ecosystem functioning,BEF)已经成为生物多样性保护和气候变化领域关注的热点问题之一,并由早期的单一营养级多样性与单个生态系统功能关系,发展到近年来的多营养级生物多样性与生态系统多功能性关系.本文介绍了多营养级生物多样性以及生态系统多功能性的基础概念,回顾了多营养级生物多样性与陆地生态系统多功能性研究的发展历程,并系统归纳了该领域近十年的重要研究进展.在此基础上,提出未来需要重点关注的3个方面:(ⅰ)基于控制实验的驱动机制研究;(ⅱ)地下多营养级生物多样性与生态系统多功能性的关系;(ⅲ)多营养级生物多样性与生态系统多功能性关系随时间尺度的变化.最后,本文呼吁不同研究方向的学者未来应加强合作并强调了开展整合性工作的必要性.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest (No. 200903005)the National Basic Research Program of China (973 Program) (Nos. 2011CB409805, 2010CB951204)+3 种基金the National Natural Science Foundation of China (No. 40976103)the Special Fund for the Basic R&D Program in the Central Non-profit Research Institutes (No. 2009-ts-10)the Taishan Scholar Program of Shandong Provincethe Yellow & Bohai Seas Scientific Observation and Experiment Station for Fishery Resources and Environment, Ministry of Agriculture
文摘The southem Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. Atrophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to 〉V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.
文摘The Interaction between potassium and moisture during the growth of and nutrient uptake by rapeseed plants grown on K-deficient soils has been investigated in this Study. The results show that the dry weight of the above-ground parts of the plant appears to be somewhat reduced when the volume water content of the soil remains 0.15 for 3 successive days. As the shortage in the soil water continues, the height of the plant root and the permeability of the root plasmalemma are markedly affected; the stem thickness and leaf area are reduced. However, K application can increase the dry matter weight of the above-ground parts, the thickness of the stem, and the area of the leaf. Application of K can also maintain a comparatively low water potential(ψ) and a comparatively high moisture content in the leaves, thus increasing the drought-resisting ability of the plant. When the volume water content of the soil is raised to 0.30, leaf yellowing as a symptom of nutrient deficiency appears on rapeseed plants grown on K-deficient soils. With increase in soil moisture content, the Ca concentration of the aerial parts of the rapeseed plant without K application increases while the K concentration decreases. Both K application and the soil moisture regime have very little effect on the Mg concentration in the plant. Under soil moisture stress, the nitrogen content and total amount of alnino acids in rape leaves increases; and thus more proline and glutamic acid is formed. On the other hand, the impact of soil moisture on plant's dry matter is governed by the status of potassium nutrition. On soils with low K, the moisture content has very little effect on yield; when K fertilizer is applied, however, the moisture content shows a very significant effect on yield increase.