Stoichiometry has long been addressed in the studies of ecosystem ecology, but it was almost ignored for a long time. Until recently, ecologists have become aware that stoichiometry could provide a new tool to study e...Stoichiometry has long been addressed in the studies of ecosystem ecology, but it was almost ignored for a long time. Until recently, ecologists have become aware that stoichiometry could provide a new tool to study ecology from genes to the biosphere. Among this trend, N:P stoichiometry is used actively in ecological interactions since nitrogen (N) and phosphorus (P) are the two most important elements in most ecosystems. This article reviews the application of N:P stoichiometry to the studies of ecological problems at different levels, including ecosystem, community and species. Meanwhile, we also provide the cellular basis of N:P stoichiometry, identify the shortages in the use of N:P stoichiometry theory, and put forward some perspectives for future research to be conducted.展开更多
文摘Stoichiometry has long been addressed in the studies of ecosystem ecology, but it was almost ignored for a long time. Until recently, ecologists have become aware that stoichiometry could provide a new tool to study ecology from genes to the biosphere. Among this trend, N:P stoichiometry is used actively in ecological interactions since nitrogen (N) and phosphorus (P) are the two most important elements in most ecosystems. This article reviews the application of N:P stoichiometry to the studies of ecological problems at different levels, including ecosystem, community and species. Meanwhile, we also provide the cellular basis of N:P stoichiometry, identify the shortages in the use of N:P stoichiometry theory, and put forward some perspectives for future research to be conducted.