This research was carried out to study the effect of fermentation on the chemical composition, anti-nutrient content, PH, titratable acidity, and microbiological changes of millet and soyabean blend. Millet and soyabe...This research was carried out to study the effect of fermentation on the chemical composition, anti-nutrient content, PH, titratable acidity, and microbiological changes of millet and soyabean blend. Millet and soyabean composite flours were mixed in gram of six combinations as follows millet and soyabean (A) = 100:0, millet and soyabean (B) = 90:10, millet and soyabean (C) = 80:20, millet and soyabean (D) = 70:30, millet and soyabean (E) = 60:40, millet and soyabean (F) = 50:50 and subjected to natural fermentation for 72 h. The following bacteria isolates were obtained from the fermentation; Lacobacillus fermentum, L. acidophilus, L. bulgaricus, L. plantarum, L. dextranicum, L. rhamnosus, L. delbrueckii, L. leichemanii, L. divergens, L. reuteri, L. jenseni, L. casei, L. salivarius, L. cellubiosus, Leuconostoc mesenteroide and Pediococcus acidilactis, of which L. plantarum was the most dominant the throughout the period of fermentation. There was decrease in pH with increase in TTA in all the samples. The result of the proximate analysis revealed a marginal increase in crude protein content of each sample (from 44.41 to 63.14, from 11.02 to 24.02, from 16.64 to 23.10, from 20.83 to 26.93, from 25.43 to 30.12, 39.12 to 35.86 and from 40.66 to 54.24%) There was increase in ash content and decrease in carbohydrate, fibre and fat contents of the fermented samples. Results from this research also show significant reduction in anti-nutritional content which are hydrogen cyanide, oxalate and phytate. Fermentation has modified the microbial and nutritional quality of the millet and soyabean blend and this has greatly improved the nutrient content of the blend.展开更多
文摘This research was carried out to study the effect of fermentation on the chemical composition, anti-nutrient content, PH, titratable acidity, and microbiological changes of millet and soyabean blend. Millet and soyabean composite flours were mixed in gram of six combinations as follows millet and soyabean (A) = 100:0, millet and soyabean (B) = 90:10, millet and soyabean (C) = 80:20, millet and soyabean (D) = 70:30, millet and soyabean (E) = 60:40, millet and soyabean (F) = 50:50 and subjected to natural fermentation for 72 h. The following bacteria isolates were obtained from the fermentation; Lacobacillus fermentum, L. acidophilus, L. bulgaricus, L. plantarum, L. dextranicum, L. rhamnosus, L. delbrueckii, L. leichemanii, L. divergens, L. reuteri, L. jenseni, L. casei, L. salivarius, L. cellubiosus, Leuconostoc mesenteroide and Pediococcus acidilactis, of which L. plantarum was the most dominant the throughout the period of fermentation. There was decrease in pH with increase in TTA in all the samples. The result of the proximate analysis revealed a marginal increase in crude protein content of each sample (from 44.41 to 63.14, from 11.02 to 24.02, from 16.64 to 23.10, from 20.83 to 26.93, from 25.43 to 30.12, 39.12 to 35.86 and from 40.66 to 54.24%) There was increase in ash content and decrease in carbohydrate, fibre and fat contents of the fermented samples. Results from this research also show significant reduction in anti-nutritional content which are hydrogen cyanide, oxalate and phytate. Fermentation has modified the microbial and nutritional quality of the millet and soyabean blend and this has greatly improved the nutrient content of the blend.