Whether it is necessary to reduce nitrogen(N) and/or phosphorus(P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that suppo...Whether it is necessary to reduce nitrogen(N) and/or phosphorus(P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that support the contrasting ideas. To test the response of phytoplankton to various combinations of nutrient control strategies in mesocosms and the possibility of reflecting the conditions in natural ecosystems with short-term experiments, a 9-month experiment was carried out in eight 800-L tanks with four nutrient level combinations(+N+P,-N+P, +N-P, and-N-P), with an 18-month whole-ecosystem experiment in eight ~800-m^2 ponds as the reference. Phytoplankton abundance was determined by P not N, regardless of the initial TN/TP level, which was in contrast to the nutrient limitation predicted by the N/P theory. Net natural N inputs were calculated to be 4.9, 6.8, 1.5, and 3.0 g in treatments +N+P,-N+P, +N-P, and-N-P, respectively, suggesting that N deficiency and P addition may promote natural N inputs to support phytoplankton development. However, the compensation process was slow, as suggested by an observed increase in TN after 3 weeks in-N+P and 2 months in-N-P in the tank experiment, and after 3 months in-N?+P and ~3 months in-N-P in our pond experiment. Obviously, such a slow process cannot be simulated in short-term experiments. The natural N inputs cannot be explained by planktonic N-fixation because N-fixing cyanobacteria were scarce, which was probably because there was a limited pool of species in the tanks. Therefore, based on our results we argue that extrapolating short-term, small-scale experiments to large natural ecosystems does not give reliable, accurate results.展开更多
An immunostimulatory factor was identified to be secreted by antigen-pulsed maorophages. This factor was able to induce the generation of antigen specific T helper lymphocytes in vitro as well as in vivo. Further in v...An immunostimulatory factor was identified to be secreted by antigen-pulsed maorophages. This factor was able to induce the generation of antigen specific T helper lymphocytes in vitro as well as in vivo. Further in vitro experiments testing for the genetic restriction of this factor indicated that it is a genetically-restricted antigen specific factor (ASF). The Cunningham plaque assay was used to quantify the generation of T helper lymphocytes by measuring the number of plaque forming cells after sequential incubations of antigen-pulsed maorophages with T lymphocytes, and then spleen cells, and finally the TNP-coated sheep red blood cells.展开更多
基金Supported by the State Key Laboratory of Freshwater Ecology and Biotechnology(Nos.2014FB14,2011FBZ14)Science and Technology Support Program of Hubei Province(No.2015BBA225)the Youth Innovation Association of Chinese Academy of Sciences(No.2014312)to WANG Haijun
文摘Whether it is necessary to reduce nitrogen(N) and/or phosphorus(P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that support the contrasting ideas. To test the response of phytoplankton to various combinations of nutrient control strategies in mesocosms and the possibility of reflecting the conditions in natural ecosystems with short-term experiments, a 9-month experiment was carried out in eight 800-L tanks with four nutrient level combinations(+N+P,-N+P, +N-P, and-N-P), with an 18-month whole-ecosystem experiment in eight ~800-m^2 ponds as the reference. Phytoplankton abundance was determined by P not N, regardless of the initial TN/TP level, which was in contrast to the nutrient limitation predicted by the N/P theory. Net natural N inputs were calculated to be 4.9, 6.8, 1.5, and 3.0 g in treatments +N+P,-N+P, +N-P, and-N-P, respectively, suggesting that N deficiency and P addition may promote natural N inputs to support phytoplankton development. However, the compensation process was slow, as suggested by an observed increase in TN after 3 weeks in-N+P and 2 months in-N-P in the tank experiment, and after 3 months in-N?+P and ~3 months in-N-P in our pond experiment. Obviously, such a slow process cannot be simulated in short-term experiments. The natural N inputs cannot be explained by planktonic N-fixation because N-fixing cyanobacteria were scarce, which was probably because there was a limited pool of species in the tanks. Therefore, based on our results we argue that extrapolating short-term, small-scale experiments to large natural ecosystems does not give reliable, accurate results.
文摘An immunostimulatory factor was identified to be secreted by antigen-pulsed maorophages. This factor was able to induce the generation of antigen specific T helper lymphocytes in vitro as well as in vivo. Further in vitro experiments testing for the genetic restriction of this factor indicated that it is a genetically-restricted antigen specific factor (ASF). The Cunningham plaque assay was used to quantify the generation of T helper lymphocytes by measuring the number of plaque forming cells after sequential incubations of antigen-pulsed maorophages with T lymphocytes, and then spleen cells, and finally the TNP-coated sheep red blood cells.