Insufficient N supply is an important constraint to productivity of lowland rice. Studies on N nutrition of rice cultivars with different durations representing the north western part of Indo-Gangetic Plains are scant...Insufficient N supply is an important constraint to productivity of lowland rice. Studies on N nutrition of rice cultivars with different durations representing the north western part of Indo-Gangetic Plains are scanty. A field experiment was conducted during kharif seasons of 2006 and 2007 at PAU, Ludhiana to assess the differences in grain yield and N utilization of three popular rice cultivars at varying N doses. Significant differences among genotypes were observed in grain yield, N uptake, N use efficiency and N utilization efficiency. The cultivar PAU-201 was found to be superior among all the tested genotypes. Total N uptake and grain N uptake was highest in cultivar PAU-201 followed by cultivars PR-115 and PR-113. On an average, the response to applied N for grain yield was observed upto 90 kg N ha1. Grain yield increased significantly up to 90 kg N hal in cultivars PR-115 and PAU-201 and up to 120 kg N ha1 in PR-113. Apparent recovery efficiency (ARE) and Partial factor productivity (PFPN) of N was significantly reduced at higher level of N (150 kg N hal). It was concluded that N uptake is predominant factor in grain yield formation and cultivars differ in NUE suggesting that it may be possible to develop cultivars that are efficient at low nutrient level or are capable of using N more efficiently when applied as fertilizer.展开更多
文摘Insufficient N supply is an important constraint to productivity of lowland rice. Studies on N nutrition of rice cultivars with different durations representing the north western part of Indo-Gangetic Plains are scanty. A field experiment was conducted during kharif seasons of 2006 and 2007 at PAU, Ludhiana to assess the differences in grain yield and N utilization of three popular rice cultivars at varying N doses. Significant differences among genotypes were observed in grain yield, N uptake, N use efficiency and N utilization efficiency. The cultivar PAU-201 was found to be superior among all the tested genotypes. Total N uptake and grain N uptake was highest in cultivar PAU-201 followed by cultivars PR-115 and PR-113. On an average, the response to applied N for grain yield was observed upto 90 kg N ha1. Grain yield increased significantly up to 90 kg N hal in cultivars PR-115 and PAU-201 and up to 120 kg N ha1 in PR-113. Apparent recovery efficiency (ARE) and Partial factor productivity (PFPN) of N was significantly reduced at higher level of N (150 kg N hal). It was concluded that N uptake is predominant factor in grain yield formation and cultivars differ in NUE suggesting that it may be possible to develop cultivars that are efficient at low nutrient level or are capable of using N more efficiently when applied as fertilizer.