The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The...The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation.展开更多
We investigated the diversity and structure of free-living marine nematode communities at three sandy beaches representing typical intertidal environments of a temperate zone in Qingdao,Shandong Province,China.Average...We investigated the diversity and structure of free-living marine nematode communities at three sandy beaches representing typical intertidal environments of a temperate zone in Qingdao,Shandong Province,China.Average nematode abundance ranged from 1006 to 2170 ind.10 cm-2,and a total of 34 nematode genera were recorded,of which only 8 were common in all the studied beaches.Pielou's evenness and Shannon-Wiener diversity index were the lowest at the second beach where nematode abundance was the highest.The highest species diversity index coincided with the lowest nematode abundance at Shilaoren beach.Sediment median grain size,sorting coefficient,and chlorophyll-a content were essential for differentiation in nematode abundance and species diversity,whereas taxonomic diversity of nematode was homogeneous across the three beaches.In 0–20 cm sediment profile,nematode abundance declined abruptly with depth,whereas nematode diversity changed gently with obvious difference in 16–20 cm layer.Sediment granulometry and chlorophyll-a content were the two foremost factors which influenced the vertical distribution pattern of nematode generic diversity.Non-selective deposit feeders constituted the most dominant trophic group,followed by epistratum feeders.Bathylaimus(family:Tripyloididae) dominated at the second and Yangkou beach,while Theristus(family:Xyalidae) prevailed at Shilaoren beach.Omnivores and predators became important at Shilaoren beach because of the high proportion of Enoplolaimus.Even though,nematode community of the studied beaches did not differ significantly from each other.展开更多
[Objective] The influences of different habitats on asexual propagation of wild Geg(abbreviation for Gastrodia elata Bl. f. glauca S. Chow) being domesticated in Ganzi prefecture was studied. [Method] The research tri...[Objective] The influences of different habitats on asexual propagation of wild Geg(abbreviation for Gastrodia elata Bl. f. glauca S. Chow) being domesticated in Ganzi prefecture was studied. [Method] The research trial was carried out in the following three kinds of habitats at the same time: the plastic greenhouses, the birch forest of shady slope and the shrubbery of sunny slope, and the results were analyzed with group data average hypothesis test method. [Result] The overall tuber(the juvenile tuber, the immature tuber and the mature tuber) yield and the mature tuber yield were both very significantly higher in the plastic greenhouses than in the other two types of habitats, and respectively reached 9.52 and 6.70 kg/m2; the mature tuber drying rate was dramatically or very dramatically lower in the plastic greenhouses than in the other two types of habitats, and was 23.84%; the stabilities of the overall tuber yield, the mature tuber yield and the drying rate were all reduced in the order of greenhouses, birch forest and shrubbery; and the dry mature tuber yield of the plastic greenhouses was the highest in the three kinds of habitats, and was 1.60 kg/m2. [Conclusion] A good habitat had to be created or chosen in the domesticating cultivation of the wild Geg in Ganzi prefecture. The preferred choice was the plastic greenhouse, the alternative one was the deciduous broadleaved forest of shady slope. The imitating wild planting of the wild Geg should be done in the warm moist deciduous broad-leaved forest of shady slope.展开更多
The overall goal of this study was to understand carbon(C) stock dynamics in four different-aged Japanese larch(Larix kaempferi) plantations in Northeast China that were established after clear-cutting old-growth Kore...The overall goal of this study was to understand carbon(C) stock dynamics in four different-aged Japanese larch(Larix kaempferi) plantations in Northeast China that were established after clear-cutting old-growth Korean pine deciduous forests. Four Japanese larch plantations which were at 10, 15, 21, and 35 years old and an old-growth Korean pine deciduous forest which was 300 years old in Northeast China were selected and sampled. We compared the C pools of biomass(tree, shrub and herb), litterfall(LF), and soil organic carbon(SOC) among them. The biomass C stock of larch plantation at 10, 15, 21, and 35 years old was 26.8, 37.9, 63.6, and 83.2 Mg/ha, respectively, while the biomass C stock of the old-growth Korean pine deciduous forest was 175.1 Mg/ha. The SOC stock of these larch plantations was 172.1, 169.7, 140.3, and 136.2 Mg/ha respectively, and SOC stock of 170.4 Mg/ha in the control of old-growth forest. The biomass C stock increased with stand age of larch plantations, whereas SOC stock decreased with age, and C stock of LF did not change significantly(P > 0.05). The increase of biomass C offset the decline of SOC stock with age, making total carbon stock(TCS) of larch plantations stable from stand ages of 10–35 years. The TCS in larch plantations was much smaller than that in the old-growth forest, suggesting that the conversion of old-growth forests to young larch plantations releases substantial C into the atmosphere.展开更多
Thinning represents an important and frequently used silvicultural technique that improves forest wood products and has obvious effects on forest carbon stocks and stock changes. Here, we used the carbon budget model ...Thinning represents an important and frequently used silvicultural technique that improves forest wood products and has obvious effects on forest carbon stocks and stock changes. Here, we used the carbon budget model CBM-CFS3 to simulate the effects of thinning on carbon storage and changes in larch forest ecosystems under thirteen thinning scenarios. Simulation results demonstrate that strong thinning greatly reduces the biomass carbon density of larch forests compared to non-thinning forests. The minimum and maximum average biomass carbon density, respectively, were 30.3 tC ha^-1 and 47.8 tC ha^-1, a difference of 58% under set scenarios in the simulated time scale. The dead organic matter(including soil) carbon density increased in all thinned larch forests stands, compared with non-thinning stands, and the pattern of variation was opposite to that found for biomass carbon density. However, the total ecosystem carbon density of larch forests declined with thinning because the increase in dead organic matter carbon is insufficient to offset the loss of biomass carbon caused by thinning. Thus, strong thinning can transform larch forest ecosystems from carbon sinks into carbon sources. Future work should consider the carbon sequestered in wood materials acquired via thinning and their use as substitutes for other construction materials with less favorable lifecycle carbon footprints, such as steel, cement, aluminum and PVC.展开更多
Senesced-leaf nutrient concentrations vary signifcantly among coexisting plant species refecting different leaf nutrient use strategies.However,interspecifc variation in senesced-leaf nutrients and its driving factors...Senesced-leaf nutrient concentrations vary signifcantly among coexisting plant species refecting different leaf nutrient use strategies.However,interspecifc variation in senesced-leaf nutrients and its driving factors are not well understood.Here,we aimed to determine interspecifc variation and its driving factors in senesced-leaf nutrients.We explored interspecifc variation in carbon(C),nitrogen(N)and phosphorus(P)concentrations in newly fallen leaves of 46 coexisting temperate deciduous woody species across the Maoershan Forest Ecosystem Research Station,Northeast China.The relative importance of 10 biotic factors(i.e.mycorrhiza type,N-fxing type,growth form,shade tolerance,laminar texture,coloring degree,coloring type,peak leaf-coloration date,peak leaf-fall date and end leaf-fall date)was quantifed with the random forest model.N and P concentrations varied 4-and 9-fold among species,respectively.The high mean N(15.38 mg·g^(−1))and P(1.24 mg·g^(−1))concentrations suggested a weak N and P limitation in the studied forest.Functional groups had only signifcant effects on specifc nutrients and their ratios.P concentration and N:P were negatively correlated with peak and end leaf-fall dates for the ectomycorrhiza species group.Brighter-colored leaves(red>brown>yellow>yellow-green>green)tended to have lower N and P concentrations and higher C:N and C:P than darker-colored leaves.The random forest model showed that autumn coloration and leaf-fall phenology contributed 80%to the total explanation of nutrient variability among species.The results increase our understanding of the variability in senesced-leaf nutrients as a strategy of woody plant nutrition in temperate forests.展开更多
Nutrient resorption is a crucial mechanism for plant nutrient conservation,but most previous studies did not consider the leaf-mass loss during senescence due to lack of measured data.This would lead to an underestima...Nutrient resorption is a crucial mechanism for plant nutrient conservation,but most previous studies did not consider the leaf-mass loss during senescence due to lack of measured data.This would lead to an underestimation of nutrient resorption efficiency(NuRE),or calculating NuRE of various species based on the average mass loss at plant-functional-group level in the literature,thus affecting its accuracy.Here we measured the leaf-mass loss to correct NuRE with the species-specific mass loss correction factor(MLCF),so as to foster a more accurate calculation of the nutrient fluxes within and between plants and the soil.Green leaves and senesced leaves were collected from 35 dominant woody plants in northern China.Mass of green and senesced leaves were measured to calculate the MLCF at species level.The MLCF was reported for each of the 35 dominant woody plants in northern China.These species averagely lost 17%of the green-leaf mass during leaf senescence,but varied greatly from 1.3%to 36.8%mass loss across the 35 species,or 11.7%to 19.6%loss across the functional types.Accordingly,the MLCF varied from 0.632 to 0.987 across the 35 species with an average value 0.832.The NuRE corrected with MLCF was remarkably increased on the whole(e.g.both the average nitrogen and phosphorus NuRE became about 9%higher,or more accurate),compared with the uncorrected ones,especially in the case of low resorption efficiencies.Our field data provide reliable references for the MLCF of plants in related regions at both species and functional-type levels,and are expected to promote more accurate calculations of NuRE.展开更多
Plant leaf litter decomposition provides a source of energy and nutrients in forest ecosystems.In addition to traditional environmental factors,the degradation process of litter is also affected by plant functional tr...Plant leaf litter decomposition provides a source of energy and nutrients in forest ecosystems.In addition to traditional environmental factors,the degradation process of litter is also affected by plant functional traits and litter quality.However,at the community level,it is still unclear whether the relative importance of plant traits and litter quality on the litter decomposition rate is consistent.A year-long mixed leaf litter decomposition experiment in a similar environment was implemented by using the litterbag method in seven typical forest types in Dongling Mountain,Beijing,North China,including six monodominant communities dominated by Juglans mandshurica,Populus cathayana,Betula dahurica,Betula platyphylla,Pinus tabuliformis and Larix gmelinii var.principis-rupprechtii and one codominant community dominated by Fraxinus rhynchophylla,Quercus mongolica and Tilia mongolica.The results showed that there were considerable differences in the litter decomposition rate(k-rate)among the different forest types.The community weighted mean(CWM)traits of green leaves and litter quality explained 35.60%and 9.05%of the k-rate variations,respectively,and the interpretation rate of their interaction was 23.37%,indicating that the CWM traits and their interaction with litter quality are the main factors affecting the k-rate variations.In the recommended daily allowance,leaf nitrogen content,leaf dry matter content,leaf tannin content and specific leaf area were the main factors affecting the k-rate variations.Therefore,we suggest that future studies should focus on the effects of the CWM traits of green leaves on litter decomposition at the community level.展开更多
Forests play an important role in the global carbon cycle and have a potential impact on global climatic change.Monitoring forest biomass is of considerable importance in understanding the hydrological cycle.Because o...Forests play an important role in the global carbon cycle and have a potential impact on global climatic change.Monitoring forest biomass is of considerable importance in understanding the hydrological cycle.Because of the problem of dense forest cover,no reliable method with which to retrieve soil moisture in forest areas from the microwave emission signature has been established.All of these issues relate to the microwave emissivity and transmissivity characteristics of a forest.The microwave emission contribution received by a sensor above a forest canopy comes from both the soil surface and the vegetation layer.To analyze the relationship of forest biomass and forest emission and transmissivity,a high-order emission model,the matrix-doubling model,which consists of both soil and vegetation models,was developed and then validated for a young deciduous forest stand in a field experiment.To simulate the emissivity and transmissivity of a deciduous forest in the L and X bands using the matrix-doubling model,the parameters of components of deciduous trees when the leaf area index varies from 1 to10 were generated by an L-system and a forest growth model.The emissivity and transmissivity of a forest and the relationships of these parameters to forest biomass are presented and analyzed in this paper.Emissivity in the L band when the leaf area index is less than 6 and at viewing angles less than 40°,and transmissivity in the L band are the most sensitive parameters in deciduous forest biomass estimation.展开更多
文摘The intercropping system of tree with soybean in juvenile plantations, as a short-term practice, was applied at Lao Shan Experimental Station in Mao'er Shan Forest of Northeast Forestry University, Harbin, China. The larch (Larix gmelinii)lsoybean (Glycine max.) and ash (Fraxinus mandshurica) intercropping systems were studied in the field to assess the effects of the intercropping on soil physicochemical properties. The results showed that soil physical properties were improved after soybean intercropping with larch and ash in one growing season. The soil bulk density in larch/soybean and ash/soybean systems was 1.112 g·cm^-3 and 1.058 g·cm^ 3, respectively, which was lower than that in the pure larch or ash plantation without intercropping. The total soil porosity also increased after intercropping. The organic matter amount in larch/soybean system was 1.77 times higher than that in the pure larch plantation, and it was 1.09 times higher in ash/soybean system than that in the pure ash plantation. Contents of total nitrogen and hydrolyzable nitrogen in larch/soybean system were 4.2% and 53.0% higher than those in the pure larch stand. Total nitrogen and hydrolyzable nitrogen contents in ash/soybean system were 75.5% and 3.3% higher than those in the pure ash plantation. Total phosphorus content decreased after intercropping, while change of available phosphorus showed an increasing trend. Total potassium and available potassium contents in the larch/soybean system were 0.6% and 17.5% higher than those in the pure larch stand. Total potassium and available potassium contents in the ash/soybean system were 56.4% and 21.8% higher than those in the oure ash plantation.
基金supported by the National Natural Science Foundation of China (Nos.40906063,41106122,40730847,and 41576153)
文摘We investigated the diversity and structure of free-living marine nematode communities at three sandy beaches representing typical intertidal environments of a temperate zone in Qingdao,Shandong Province,China.Average nematode abundance ranged from 1006 to 2170 ind.10 cm-2,and a total of 34 nematode genera were recorded,of which only 8 were common in all the studied beaches.Pielou's evenness and Shannon-Wiener diversity index were the lowest at the second beach where nematode abundance was the highest.The highest species diversity index coincided with the lowest nematode abundance at Shilaoren beach.Sediment median grain size,sorting coefficient,and chlorophyll-a content were essential for differentiation in nematode abundance and species diversity,whereas taxonomic diversity of nematode was homogeneous across the three beaches.In 0–20 cm sediment profile,nematode abundance declined abruptly with depth,whereas nematode diversity changed gently with obvious difference in 16–20 cm layer.Sediment granulometry and chlorophyll-a content were the two foremost factors which influenced the vertical distribution pattern of nematode generic diversity.Non-selective deposit feeders constituted the most dominant trophic group,followed by epistratum feeders.Bathylaimus(family:Tripyloididae) dominated at the second and Yangkou beach,while Theristus(family:Xyalidae) prevailed at Shilaoren beach.Omnivores and predators became important at Shilaoren beach because of the high proportion of Enoplolaimus.Even though,nematode community of the studied beaches did not differ significantly from each other.
基金Supported by Key Natural Science Program of the Education Department of Sichuan province(12ZA103)
文摘[Objective] The influences of different habitats on asexual propagation of wild Geg(abbreviation for Gastrodia elata Bl. f. glauca S. Chow) being domesticated in Ganzi prefecture was studied. [Method] The research trial was carried out in the following three kinds of habitats at the same time: the plastic greenhouses, the birch forest of shady slope and the shrubbery of sunny slope, and the results were analyzed with group data average hypothesis test method. [Result] The overall tuber(the juvenile tuber, the immature tuber and the mature tuber) yield and the mature tuber yield were both very significantly higher in the plastic greenhouses than in the other two types of habitats, and respectively reached 9.52 and 6.70 kg/m2; the mature tuber drying rate was dramatically or very dramatically lower in the plastic greenhouses than in the other two types of habitats, and was 23.84%; the stabilities of the overall tuber yield, the mature tuber yield and the drying rate were all reduced in the order of greenhouses, birch forest and shrubbery; and the dry mature tuber yield of the plastic greenhouses was the highest in the three kinds of habitats, and was 1.60 kg/m2. [Conclusion] A good habitat had to be created or chosen in the domesticating cultivation of the wild Geg in Ganzi prefecture. The preferred choice was the plastic greenhouse, the alternative one was the deciduous broadleaved forest of shady slope. The imitating wild planting of the wild Geg should be done in the warm moist deciduous broad-leaved forest of shady slope.
基金National Key Technologies Research and Development Program of China(No.2012BAD22B04)National Science Foundation Grant(No.DBI-0821649)+2 种基金Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-Q1-0501)Research Foundation of Science and Technology Department of Henan Province(No.142106000090)High Level Talent Project of Pingdingshan University(No.2011009/G)
文摘The overall goal of this study was to understand carbon(C) stock dynamics in four different-aged Japanese larch(Larix kaempferi) plantations in Northeast China that were established after clear-cutting old-growth Korean pine deciduous forests. Four Japanese larch plantations which were at 10, 15, 21, and 35 years old and an old-growth Korean pine deciduous forest which was 300 years old in Northeast China were selected and sampled. We compared the C pools of biomass(tree, shrub and herb), litterfall(LF), and soil organic carbon(SOC) among them. The biomass C stock of larch plantation at 10, 15, 21, and 35 years old was 26.8, 37.9, 63.6, and 83.2 Mg/ha, respectively, while the biomass C stock of the old-growth Korean pine deciduous forest was 175.1 Mg/ha. The SOC stock of these larch plantations was 172.1, 169.7, 140.3, and 136.2 Mg/ha respectively, and SOC stock of 170.4 Mg/ha in the control of old-growth forest. The biomass C stock increased with stand age of larch plantations, whereas SOC stock decreased with age, and C stock of LF did not change significantly(P > 0.05). The increase of biomass C offset the decline of SOC stock with age, making total carbon stock(TCS) of larch plantations stable from stand ages of 10–35 years. The TCS in larch plantations was much smaller than that in the old-growth forest, suggesting that the conversion of old-growth forests to young larch plantations releases substantial C into the atmosphere.
基金Strategic Priority Research Program of Chinese Academy of Sciences(XDA05050203)Knowledge Innovation Projects of Significant Directions of Chinese Academy of Sciences(KZCX2-YW-Q1-05)
文摘Thinning represents an important and frequently used silvicultural technique that improves forest wood products and has obvious effects on forest carbon stocks and stock changes. Here, we used the carbon budget model CBM-CFS3 to simulate the effects of thinning on carbon storage and changes in larch forest ecosystems under thirteen thinning scenarios. Simulation results demonstrate that strong thinning greatly reduces the biomass carbon density of larch forests compared to non-thinning forests. The minimum and maximum average biomass carbon density, respectively, were 30.3 tC ha^-1 and 47.8 tC ha^-1, a difference of 58% under set scenarios in the simulated time scale. The dead organic matter(including soil) carbon density increased in all thinned larch forests stands, compared with non-thinning stands, and the pattern of variation was opposite to that found for biomass carbon density. However, the total ecosystem carbon density of larch forests declined with thinning because the increase in dead organic matter carbon is insufficient to offset the loss of biomass carbon caused by thinning. Thus, strong thinning can transform larch forest ecosystems from carbon sinks into carbon sources. Future work should consider the carbon sequestered in wood materials acquired via thinning and their use as substitutes for other construction materials with less favorable lifecycle carbon footprints, such as steel, cement, aluminum and PVC.
基金funded by the National Natural Science Foundation of China(32171765)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R09)。
文摘Senesced-leaf nutrient concentrations vary signifcantly among coexisting plant species refecting different leaf nutrient use strategies.However,interspecifc variation in senesced-leaf nutrients and its driving factors are not well understood.Here,we aimed to determine interspecifc variation and its driving factors in senesced-leaf nutrients.We explored interspecifc variation in carbon(C),nitrogen(N)and phosphorus(P)concentrations in newly fallen leaves of 46 coexisting temperate deciduous woody species across the Maoershan Forest Ecosystem Research Station,Northeast China.The relative importance of 10 biotic factors(i.e.mycorrhiza type,N-fxing type,growth form,shade tolerance,laminar texture,coloring degree,coloring type,peak leaf-coloration date,peak leaf-fall date and end leaf-fall date)was quantifed with the random forest model.N and P concentrations varied 4-and 9-fold among species,respectively.The high mean N(15.38 mg·g^(−1))and P(1.24 mg·g^(−1))concentrations suggested a weak N and P limitation in the studied forest.Functional groups had only signifcant effects on specifc nutrients and their ratios.P concentration and N:P were negatively correlated with peak and end leaf-fall dates for the ectomycorrhiza species group.Brighter-colored leaves(red>brown>yellow>yellow-green>green)tended to have lower N and P concentrations and higher C:N and C:P than darker-colored leaves.The random forest model showed that autumn coloration and leaf-fall phenology contributed 80%to the total explanation of nutrient variability among species.The results increase our understanding of the variability in senesced-leaf nutrients as a strategy of woody plant nutrition in temperate forests.
基金TheNational Key Researchand Development Program of China(2018YFC0507204)"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDA26040202)the National Natural Science Foundation of China(41473068).
文摘Nutrient resorption is a crucial mechanism for plant nutrient conservation,but most previous studies did not consider the leaf-mass loss during senescence due to lack of measured data.This would lead to an underestimation of nutrient resorption efficiency(NuRE),or calculating NuRE of various species based on the average mass loss at plant-functional-group level in the literature,thus affecting its accuracy.Here we measured the leaf-mass loss to correct NuRE with the species-specific mass loss correction factor(MLCF),so as to foster a more accurate calculation of the nutrient fluxes within and between plants and the soil.Green leaves and senesced leaves were collected from 35 dominant woody plants in northern China.Mass of green and senesced leaves were measured to calculate the MLCF at species level.The MLCF was reported for each of the 35 dominant woody plants in northern China.These species averagely lost 17%of the green-leaf mass during leaf senescence,but varied greatly from 1.3%to 36.8%mass loss across the 35 species,or 11.7%to 19.6%loss across the functional types.Accordingly,the MLCF varied from 0.632 to 0.987 across the 35 species with an average value 0.832.The NuRE corrected with MLCF was remarkably increased on the whole(e.g.both the average nitrogen and phosphorus NuRE became about 9%higher,or more accurate),compared with the uncorrected ones,especially in the case of low resorption efficiencies.Our field data provide reliable references for the MLCF of plants in related regions at both species and functional-type levels,and are expected to promote more accurate calculations of NuRE.
基金This work was supported by the National Natural Science Foundation of China(10300-210100218).
文摘Plant leaf litter decomposition provides a source of energy and nutrients in forest ecosystems.In addition to traditional environmental factors,the degradation process of litter is also affected by plant functional traits and litter quality.However,at the community level,it is still unclear whether the relative importance of plant traits and litter quality on the litter decomposition rate is consistent.A year-long mixed leaf litter decomposition experiment in a similar environment was implemented by using the litterbag method in seven typical forest types in Dongling Mountain,Beijing,North China,including six monodominant communities dominated by Juglans mandshurica,Populus cathayana,Betula dahurica,Betula platyphylla,Pinus tabuliformis and Larix gmelinii var.principis-rupprechtii and one codominant community dominated by Fraxinus rhynchophylla,Quercus mongolica and Tilia mongolica.The results showed that there were considerable differences in the litter decomposition rate(k-rate)among the different forest types.The community weighted mean(CWM)traits of green leaves and litter quality explained 35.60%and 9.05%of the k-rate variations,respectively,and the interpretation rate of their interaction was 23.37%,indicating that the CWM traits and their interaction with litter quality are the main factors affecting the k-rate variations.In the recommended daily allowance,leaf nitrogen content,leaf dry matter content,leaf tannin content and specific leaf area were the main factors affecting the k-rate variations.Therefore,we suggest that future studies should focus on the effects of the CWM traits of green leaves on litter decomposition at the community level.
基金supported by the National Basic Research Program of China(Grant No.2013CB733406)the National Natural Science Foundations of China(Grant No.41171266)
文摘Forests play an important role in the global carbon cycle and have a potential impact on global climatic change.Monitoring forest biomass is of considerable importance in understanding the hydrological cycle.Because of the problem of dense forest cover,no reliable method with which to retrieve soil moisture in forest areas from the microwave emission signature has been established.All of these issues relate to the microwave emissivity and transmissivity characteristics of a forest.The microwave emission contribution received by a sensor above a forest canopy comes from both the soil surface and the vegetation layer.To analyze the relationship of forest biomass and forest emission and transmissivity,a high-order emission model,the matrix-doubling model,which consists of both soil and vegetation models,was developed and then validated for a young deciduous forest stand in a field experiment.To simulate the emissivity and transmissivity of a deciduous forest in the L and X bands using the matrix-doubling model,the parameters of components of deciduous trees when the leaf area index varies from 1 to10 were generated by an L-system and a forest growth model.The emissivity and transmissivity of a forest and the relationships of these parameters to forest biomass are presented and analyzed in this paper.Emissivity in the L band when the leaf area index is less than 6 and at viewing angles less than 40°,and transmissivity in the L band are the most sensitive parameters in deciduous forest biomass estimation.