Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal...Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal energy are calculated by employing retarded Green function technique. The sublattice magnetizations at ground state are smaller than their classical values, owing to the zero-point quantum fluctuations of the spins.展开更多
In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of ...In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of the coherent states. Through calculating the expectation values of spin fluctuations we gain the condition of achieving magnon self-squeezing. We introduce the mean-field theory for dealing with the nonlinear interaction term of Hamiltonian of magnon system.展开更多
In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. He...In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.展开更多
Bodies freely falling in steady water or air are common scenes encountered in various scientific and engineering fields, including the flapping flight of birds and the reentry of a space shuttle. In this work, the fre...Bodies freely falling in steady water or air are common scenes encountered in various scientific and engineering fields, including the flapping flight of birds and the reentry of a space shuttle. In this work, the freely falling annular thin disks with small dimensionless moments of inertia f and Reynolds number Re are investigated experimentally in a water tank. We use stereo- scopic vision to record the position and orientation of the disks. The flow structure behind the disks is studied by applying fluorescent dye visualization and PIV method. Varying the geometry dimensionless parameter (the inner to outer diameter ratio η and I*) of the disks reveals two new falling patterns. When ηcritl=0.6〈η〈ηcrit2=0.8, the disks show a random lateral vibration while falling. For high ηcrit2〉0.8, the circular vortex loops shed frequently from the disk, which causes a lengthways vibration superimposed onto straight vertical motion. We also observe another two falling patterns reported previously: hula-hoop and helical motion. By comparing the wake structure of the two motions, we find that the vortex layer twists more violently in the hula-hoop motion, which is the reason for the different trajectory between them. Further research on flow field reveals that the torque on the disk that causes the vibration is due to the formation, elongation and shedding of the vortex.展开更多
A new one-dimensional(1 D) antiferromagnetic transition metal hybrid fluoride CoF2(H2O)2(pyz)(pyz =pyrazine) together with two new isostructural MF2(H2O)2(pyz)(M = Ni^2+, Zn^2+) have been successfully synthesized by t...A new one-dimensional(1 D) antiferromagnetic transition metal hybrid fluoride CoF2(H2O)2(pyz)(pyz =pyrazine) together with two new isostructural MF2(H2O)2(pyz)(M = Ni^2+, Zn^2+) have been successfully synthesized by the hydrothermal method. Their structures were determined by single crystal X-ray diffraction and they all crystallize in the same space group of C2/m. The magnetic property of CoF2(H2O)2(pyz) 1 was measured and discussed. The Weiss constant of-20.6 K indicates dominant antiferromagnetic interaction and the effective magnetic moment of about 5.66 μBsuggests large unquenched orbital contribution and anisotropy in 1. The quantum fluctuations in the quasi-1 D antiferromagnet of 1 prevent the appearance of long range magnetic order until 2.9 K, suggesting good 1 D magnetism.展开更多
基金supported by the Natural Science Foundation of Liaoning Province under Grant No.20041021the Scientific Foundation of the Educational Department of Liaoning Province under Grant Nos.2004C006 and 20060638the Postdoctoral Foundation of Shenyang University of Technology
文摘Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal energy are calculated by employing retarded Green function technique. The sublattice magnetizations at ground state are smaller than their classical values, owing to the zero-point quantum fluctuations of the spins.
基金The project supported by National Natural Science Foundation of China under Grant Nos .19847004 and 10474025
文摘In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of the coherent states. Through calculating the expectation values of spin fluctuations we gain the condition of achieving magnon self-squeezing. We introduce the mean-field theory for dealing with the nonlinear interaction term of Hamiltonian of magnon system.
基金support by the National Key R&D Program of China (2021YFA1400100)the National Natural Science Foundation of China (11827805 and 12150003)+12 种基金Shanghai Municipal Science and Technology Major Project (2019SHZDZX01)support by the National Key R&D Program of China (2018YFE0202600)Beijing Natural Science Foundation (Z200005)support from JSPS KAKENHI (19H05790, 20H00354, and 21H05233)A3 Foresight by JSPSfinancial support from the National Natural Science Foundation of China (11874115)financial support from the Ministry of Science and Technology (MOST) of China (2018YFE0202700)the National Natural Science Foundation of China (11974422)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000)the Fundamental Research Funds for the Central Universities, Chinathe Research Funds of Renmin University of China (22XNKJ30)supported by the National Natural Science Foundation of China (12104504)the China Postdoctoral Science Foundation (2021 M693479)。
文摘In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.
基金supported by the National Natural Science Foundation of China(Grant No.11672094)the Natural Science Foundation of Heilongjiang Province of China(Grant No.A201409)
文摘Bodies freely falling in steady water or air are common scenes encountered in various scientific and engineering fields, including the flapping flight of birds and the reentry of a space shuttle. In this work, the freely falling annular thin disks with small dimensionless moments of inertia f and Reynolds number Re are investigated experimentally in a water tank. We use stereo- scopic vision to record the position and orientation of the disks. The flow structure behind the disks is studied by applying fluorescent dye visualization and PIV method. Varying the geometry dimensionless parameter (the inner to outer diameter ratio η and I*) of the disks reveals two new falling patterns. When ηcritl=0.6〈η〈ηcrit2=0.8, the disks show a random lateral vibration while falling. For high ηcrit2〉0.8, the circular vortex loops shed frequently from the disk, which causes a lengthways vibration superimposed onto straight vertical motion. We also observe another two falling patterns reported previously: hula-hoop and helical motion. By comparing the wake structure of the two motions, we find that the vortex layer twists more violently in the hula-hoop motion, which is the reason for the different trajectory between them. Further research on flow field reveals that the torque on the disk that causes the vibration is due to the formation, elongation and shedding of the vortex.
基金supported by the National Natural Science Foundation of China (21901078)the Fundamental Research Funds for the Central Universities (2019kfy XKJC016)startup of Huazhong University of Science and Technology
文摘A new one-dimensional(1 D) antiferromagnetic transition metal hybrid fluoride CoF2(H2O)2(pyz)(pyz =pyrazine) together with two new isostructural MF2(H2O)2(pyz)(M = Ni^2+, Zn^2+) have been successfully synthesized by the hydrothermal method. Their structures were determined by single crystal X-ray diffraction and they all crystallize in the same space group of C2/m. The magnetic property of CoF2(H2O)2(pyz) 1 was measured and discussed. The Weiss constant of-20.6 K indicates dominant antiferromagnetic interaction and the effective magnetic moment of about 5.66 μBsuggests large unquenched orbital contribution and anisotropy in 1. The quantum fluctuations in the quasi-1 D antiferromagnet of 1 prevent the appearance of long range magnetic order until 2.9 K, suggesting good 1 D magnetism.