The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated wi...The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an effective method to analyze dead/ living ceils in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%+6%) were lower than those in winter (27%q-16%). Six groups of phytoplankton (G1-G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in % DC had different responses to environmental constraints. The main factors affecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additio^aally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton % DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a). Moreover, the lowest mean % DC in total phytoplankton was 16%q-6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the fimctioning of subtropical ecosystems.展开更多
This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach.Seawater samples containing natural phytoplankton communities we...This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach.Seawater samples containing natural phytoplankton communities were collected from waters around Baozhu Islet in inner Xiamen Bay and around Qingyu Islet in the outer bay.The goal was to elucidate the relationship between phytoplankton population enhancement,the biological removal of nitrogen and phosphorus from the seawater,and the phytoplankton nitrogen and phosphorus intake ratio based on nitrogen and phosphorus removal from seawater by phytoplankton,to provide a basis for detecting prewarning conditions for red tide and the assessment of red tide events.Two key results were obtained:1.During the experiment,the nitrogen and phosphorus seawater concentrations in samples from these two sites were negatively and closely correlated to the logarithm of the phytoplankton cell concentration and to the value of the apparent oxygen increment.The ratio of the intake coefficients was 3.5:1 for phosphorus and 1.1:1 for nitrogen for the phytoplankton between these samples from around Baozhu Islet and Qingyu Islet,respectively.This indicates that the intake capabilities of phytoplankton for nitrogen in the two waters are essentially identical.However,for phosphorus,the capability was much higher in the Baozhu Islet waters than the Qingyu Islet waters.In other words,the phytoplankton in Qingyu Islet waters produced more biomass while consuming the same amount of phosphorus as the other waters;2.The phytoplankton nitrogen and phosphorus intake ratio from the Baozhu Islet and Qingyu Islet waters was 20:1 and 36:1,respectively.The latter waters had a significantly higher ratio than the former and both were higher than the Redfield Ratio.These results indicate that nitrogen and phosphorus intake ratios by phytoplankton can vary significantly from region to region.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41330961,41406143)the Chinese Academy of Sciences Special Pilot Program(No.XDA10020103)+1 种基金the SOA Ocean Research Project,China(No.201105021-03)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130121110031)
文摘The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an effective method to analyze dead/ living ceils in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%+6%) were lower than those in winter (27%q-16%). Six groups of phytoplankton (G1-G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in % DC had different responses to environmental constraints. The main factors affecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additio^aally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton % DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a). Moreover, the lowest mean % DC in total phytoplankton was 16%q-6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the fimctioning of subtropical ecosystems.
基金Supported by the Commonweal Program for the Institute (No. 2004DIB3J084)908 Project (No. 02-02-01 special subject)the Program of Chinese Marine Chemistry Investigation and Research (No. 908-ZC-I-03)
文摘This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach.Seawater samples containing natural phytoplankton communities were collected from waters around Baozhu Islet in inner Xiamen Bay and around Qingyu Islet in the outer bay.The goal was to elucidate the relationship between phytoplankton population enhancement,the biological removal of nitrogen and phosphorus from the seawater,and the phytoplankton nitrogen and phosphorus intake ratio based on nitrogen and phosphorus removal from seawater by phytoplankton,to provide a basis for detecting prewarning conditions for red tide and the assessment of red tide events.Two key results were obtained:1.During the experiment,the nitrogen and phosphorus seawater concentrations in samples from these two sites were negatively and closely correlated to the logarithm of the phytoplankton cell concentration and to the value of the apparent oxygen increment.The ratio of the intake coefficients was 3.5:1 for phosphorus and 1.1:1 for nitrogen for the phytoplankton between these samples from around Baozhu Islet and Qingyu Islet,respectively.This indicates that the intake capabilities of phytoplankton for nitrogen in the two waters are essentially identical.However,for phosphorus,the capability was much higher in the Baozhu Islet waters than the Qingyu Islet waters.In other words,the phytoplankton in Qingyu Islet waters produced more biomass while consuming the same amount of phosphorus as the other waters;2.The phytoplankton nitrogen and phosphorus intake ratio from the Baozhu Islet and Qingyu Islet waters was 20:1 and 36:1,respectively.The latter waters had a significantly higher ratio than the former and both were higher than the Redfield Ratio.These results indicate that nitrogen and phosphorus intake ratios by phytoplankton can vary significantly from region to region.