Host genes involved in lipid metabolism are differentially affected during the early stages of hepatitis C virus (HCV) infection. Here we demonstrate that artificial up-regulation of fatty acid biosynthesis has a po...Host genes involved in lipid metabolism are differentially affected during the early stages of hepatitis C virus (HCV) infection. Here we demonstrate that artificial up-regulation of fatty acid biosynthesis has a positive effect on the replication of the HCV full-length replicon when cells were treated with nystatin. Conversely, the HCV RNA replication was decreased when fatty acid biosynthesis was inhibited with 25-hydroxycholesterol and PDMP(D-threo-l-phenyl-2-decanoylamino-3- morpholino-l-propanol). In agreement with these results, the expression level of GlcT-l(ceramide glucosyltransferase), a host glucosyltransferase in the first step of GSL (glycosphingolipid) biosynthesis, was found to be closely associated with the expression and replication of HCV RNA. On the other hand, the viral RNA can also activate GlcT-1 in the early stage of viral RNA transfection in vitro. To identify viral factors that are responsible for GlcT-1 activation, we constructed ten stable Vero cell lines that express individual HCV proteins. Based on the analyses of these cell lines and transient transfection assay of the GlcT-1 promoter regions, we conclude that HCV proteins, especially NS5A and NS5B, have positive effects on the expression of GlcT-1. It is possible that NS5A and NS5B stimulate transcription factor(s) to activate the expression of GlcT-1 by increasing its transcription level展开更多
Triphenylphosphine coupled with trichloroacetamide was determined to be an effective reagent for the conversion of 2,3,4,6-tetra-O-benzyl-D-glucopyranose as a glycosyl hemiacetal to the corresponding glycosyl chloride...Triphenylphosphine coupled with trichloroacetamide was determined to be an effective reagent for the conversion of 2,3,4,6-tetra-O-benzyl-D-glucopyranose as a glycosyl hemiacetal to the corresponding glycosyl chloride in excellent yield under mild and neutral conditions. Subsequently, the glycosyl chloride was reacted with alcohol or glycosyl acceptors in the presence of zinc(ll) bromide and molecular sieve 5 A to afford the corresponding glycosides in high yields and a-selectivity. This practical and convenient protocol can be utilized for the one-pot glycosylation of glycosyl hemiacetals.展开更多
The covalent attachment of O-linked β-N- acetylglucosamine (O-GIcNAc) to Ser/Thr residues of proteins acts as not only a posttranslational modification but also a nutritional sensor in nucleus and cytoplasm, which ...The covalent attachment of O-linked β-N- acetylglucosamine (O-GIcNAc) to Ser/Thr residues of proteins acts as not only a posttranslational modification but also a nutritional sensor in nucleus and cytoplasm, which directly regulates the expression of genes and multiple crucial signal transduction pathways. Dynamic O- GlcNAcylation at Ser/Thr residues is catalyzed by two key enzymes, O-GIcNAc transferase (OGT) and O-GlcNAcase, which are responsible for addition and removal of the O- GlcNAc modification, respectively. O-GlcNAc modifica- tion plays important roles in cellular signaling in animals, especially in human diseases. Two orthologs of OGT in plants, SECRET AGENT and SPINDLY, have been reported to be involved in diverse plant processes. However, compared with the functional mechanisms revealed in animals, the consequences of protein O-GlcNAc modifi- cation in plants is largely unknown, and the relationship between O-GlcNAcylation and cellular processes needs to be explored. In this review, we summarized the recent advances on O-GlcNAc modification and its biological functions in animals and plants, and prospect of more special functions of O-GlcNAc will be revealed in plants.展开更多
基金the National"973"Program of China(No.2011CB504800)
文摘Host genes involved in lipid metabolism are differentially affected during the early stages of hepatitis C virus (HCV) infection. Here we demonstrate that artificial up-regulation of fatty acid biosynthesis has a positive effect on the replication of the HCV full-length replicon when cells were treated with nystatin. Conversely, the HCV RNA replication was decreased when fatty acid biosynthesis was inhibited with 25-hydroxycholesterol and PDMP(D-threo-l-phenyl-2-decanoylamino-3- morpholino-l-propanol). In agreement with these results, the expression level of GlcT-l(ceramide glucosyltransferase), a host glucosyltransferase in the first step of GSL (glycosphingolipid) biosynthesis, was found to be closely associated with the expression and replication of HCV RNA. On the other hand, the viral RNA can also activate GlcT-1 in the early stage of viral RNA transfection in vitro. To identify viral factors that are responsible for GlcT-1 activation, we constructed ten stable Vero cell lines that express individual HCV proteins. Based on the analyses of these cell lines and transient transfection assay of the GlcT-1 promoter regions, we conclude that HCV proteins, especially NS5A and NS5B, have positive effects on the expression of GlcT-1. It is possible that NS5A and NS5B stimulate transcription factor(s) to activate the expression of GlcT-1 by increasing its transcription level
文摘Triphenylphosphine coupled with trichloroacetamide was determined to be an effective reagent for the conversion of 2,3,4,6-tetra-O-benzyl-D-glucopyranose as a glycosyl hemiacetal to the corresponding glycosyl chloride in excellent yield under mild and neutral conditions. Subsequently, the glycosyl chloride was reacted with alcohol or glycosyl acceptors in the presence of zinc(ll) bromide and molecular sieve 5 A to afford the corresponding glycosides in high yields and a-selectivity. This practical and convenient protocol can be utilized for the one-pot glycosylation of glycosyl hemiacetals.
基金This work was supported by the National Basic Research Program of China (2011CB915404) the National Natural Science Foundation of China (No.31270310) and the Fundamental Research Funds for the Central Universities (2572014EA04).
文摘The covalent attachment of O-linked β-N- acetylglucosamine (O-GIcNAc) to Ser/Thr residues of proteins acts as not only a posttranslational modification but also a nutritional sensor in nucleus and cytoplasm, which directly regulates the expression of genes and multiple crucial signal transduction pathways. Dynamic O- GlcNAcylation at Ser/Thr residues is catalyzed by two key enzymes, O-GIcNAc transferase (OGT) and O-GlcNAcase, which are responsible for addition and removal of the O- GlcNAc modification, respectively. O-GlcNAc modifica- tion plays important roles in cellular signaling in animals, especially in human diseases. Two orthologs of OGT in plants, SECRET AGENT and SPINDLY, have been reported to be involved in diverse plant processes. However, compared with the functional mechanisms revealed in animals, the consequences of protein O-GlcNAc modifi- cation in plants is largely unknown, and the relationship between O-GlcNAcylation and cellular processes needs to be explored. In this review, we summarized the recent advances on O-GlcNAc modification and its biological functions in animals and plants, and prospect of more special functions of O-GlcNAc will be revealed in plants.