[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phyl...[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phylogenetic tree of G6PDH gene were analyzed by BLAST and other bioinformatics software within Eucalyptus grandsis whole genome database.[Result] Six G6PDH genes,including one cytomic type and five plastids,were detected in the E.grandsis genome.All the G6PDHs have conserved motifs of motif 1,motif 2,motif 3,motif 7,motif 9 and motif 11.Furthermore,promoter sequences of all E.grandsis G6PDH contain TATA box,enhancer,light-responsive,hormone-responsive and stress-responsive regulatory elements.[Conclusion] This study provided reference for the further revealing molecular function of E.grandsis G6PDH gene family展开更多
Yeast strain Y68 producing high level of pullulan was isolated from the phyton collected in Toulouse, France. This strain was identified to be Rhodotorula bacarum by BIOLOG analysis. This is the first report that pull...Yeast strain Y68 producing high level of pullulan was isolated from the phyton collected in Toulouse, France. This strain was identified to be Rhodotorula bacarum by BIOLOG analysis. This is the first report that pullulan was produced by Rhodotorula bacarum. The optimal medium (g L -1) for pullulan production by this strain was 80 glucose, 20 soybean cake hydrolysate, 5 K 2HPO 4, 1 NaCl, 0.2 MgSO 4·7H 2O, 0.6 (NH 4) 2SO 4, pH 7.0. Under this condition, 54 g L -1 pullulan was produced within 60 h at 30 ℃. Pullulan is a better starting material for producing marine prodrugs.展开更多
Diabetes mellitus (DM) is associated with increased oxidative stress due to elevated glucose levels in the plasma. Glucose promotes glycosylation of both plasma and cellular proteins with increased risk for vascular...Diabetes mellitus (DM) is associated with increased oxidative stress due to elevated glucose levels in the plasma. Glucose promotes glycosylation of both plasma and cellular proteins with increased risk for vascular events. Diabetic patients suffer from a higher incidence of cardiovascular complications such as diabetic ne-phropathy. Haptoglobin (Hp) is an antioxidant plasma protein which binds free hemoglobin, thus preventing heme-iron mediated oxidation. Two alleles exist at the Hp gene locus (1 and 2) encoding three possible Hp genotypes that differ in their antioxidant ability, and may respond differently to vitamin E treatment. Several clinical studies to have shown that Hp 1-1 genotype is a superior antioxidant to the Hp 2-2 genotype and Hp 2-2 genotype is associated with a higher incidence of cardiovascular disease. Vitamin E was found to have benefcial effect in patient and mice with Hp 2-2 geno-type. In this review we have summarized the results of our studies in patients with diabetic nephropathy treated with vitamin E and in diabetic mice with differ-ent haptoglobin genotypes.展开更多
基金Supported by Seeding Raising Project from Guangdong Provincial Department(LYM10040)Open Research Project of Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants,MOE,Beijing Forestry University(FOP2010-4)~~
文摘[Objective] The aim of this study was to perform genome-wide analysis of glucose-6-phosphate dehydrogenase(G6PDH) and reveal its evolution in Eucalyptus grandsis.[Method] The gene character,protein sequence and phylogenetic tree of G6PDH gene were analyzed by BLAST and other bioinformatics software within Eucalyptus grandsis whole genome database.[Result] Six G6PDH genes,including one cytomic type and five plastids,were detected in the E.grandsis genome.All the G6PDHs have conserved motifs of motif 1,motif 2,motif 3,motif 7,motif 9 and motif 11.Furthermore,promoter sequences of all E.grandsis G6PDH contain TATA box,enhancer,light-responsive,hormone-responsive and stress-responsive regulatory elements.[Conclusion] This study provided reference for the further revealing molecular function of E.grandsis G6PDH gene family
基金National Natural Science Foundation of China(Grant No.39970005)for its financial support
文摘Yeast strain Y68 producing high level of pullulan was isolated from the phyton collected in Toulouse, France. This strain was identified to be Rhodotorula bacarum by BIOLOG analysis. This is the first report that pullulan was produced by Rhodotorula bacarum. The optimal medium (g L -1) for pullulan production by this strain was 80 glucose, 20 soybean cake hydrolysate, 5 K 2HPO 4, 1 NaCl, 0.2 MgSO 4·7H 2O, 0.6 (NH 4) 2SO 4, pH 7.0. Under this condition, 54 g L -1 pullulan was produced within 60 h at 30 ℃. Pullulan is a better starting material for producing marine prodrugs.
文摘Diabetes mellitus (DM) is associated with increased oxidative stress due to elevated glucose levels in the plasma. Glucose promotes glycosylation of both plasma and cellular proteins with increased risk for vascular events. Diabetic patients suffer from a higher incidence of cardiovascular complications such as diabetic ne-phropathy. Haptoglobin (Hp) is an antioxidant plasma protein which binds free hemoglobin, thus preventing heme-iron mediated oxidation. Two alleles exist at the Hp gene locus (1 and 2) encoding three possible Hp genotypes that differ in their antioxidant ability, and may respond differently to vitamin E treatment. Several clinical studies to have shown that Hp 1-1 genotype is a superior antioxidant to the Hp 2-2 genotype and Hp 2-2 genotype is associated with a higher incidence of cardiovascular disease. Vitamin E was found to have benefcial effect in patient and mice with Hp 2-2 geno-type. In this review we have summarized the results of our studies in patients with diabetic nephropathy treated with vitamin E and in diabetic mice with differ-ent haptoglobin genotypes.