We develop a coarse grained (CG) approach for efficiently simulating calcium dynamics in the endoplasmic reticulum membrane based on a fine stochastic lattice gas model. By grouping neighboring microscopic sites tog...We develop a coarse grained (CG) approach for efficiently simulating calcium dynamics in the endoplasmic reticulum membrane based on a fine stochastic lattice gas model. By grouping neighboring microscopic sites together into CG cells and deriving CG reaction rates using local mean field approximation, we perform CG kinetic Monte Carlo (kMC) simulations and find the results of CG-kMC simulations are in excellent agreement with that of the microscopic ones. Strikingly, there is an appropriate range of coarse proportion rn, corresponding to the minimal deviation of the phase transition point compared to the microscopic one. For fixed m, the critical point increases monotonously as the system size increases, especially, there exists scaling law between the deviations of the phase transition point and the system size. Moreover, the CG approach provides significantly faster Monte Carlo simulations which are easy to implement and are directly related to the microscopics, so that one can study the system size effects at the cost of reasonable computational time.展开更多
Semi-batch crystallization of 7-amino-desacetoxycephalosporanic acid (7-ADCA) is a complicated process, in which agglomeration occurs together with nucleation and crystal growth. To systematically study such a process...Semi-batch crystallization of 7-amino-desacetoxycephalosporanic acid (7-ADCA) is a complicated process, in which agglomeration occurs together with nucleation and crystal growth. To systematically study such a process, experiments were conducted to estimate the crystallization thermodynamics and kinetics, and then the process was simulated by a numerical method. The application of Monte Carlo concept in the algorithm to describe agglomeration event offers an alternative approach of solving the population balance, the intrinsic simplicity of which allows us to investigate several mechanisms and include several internal coordinates in the analysis. Furthermore, present study may be a valuable paradigm for other semi-batch crystallization processes.展开更多
Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is...Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is still unrevealed.Here,we establish a general kinetic Monte Carlo model for transition metal dichalcogenides(TMDs) growth to address such an issue.Our model is able to reproduce several key findings in experiments,and reveals that the dimensionality is determined by the lattice mismatch and the interaction strength between TMDs and the substrate.We predict that the dimensionality can be well tuned by the interaction strength and the geometry of the substrate.Our work deepens the understanding of tunable dimensionality of low-dimensional materials and may inspire new concepts for the design of such materials with expected dimensionality.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.11205002). Chuansheng Shen was also supported by the Key Scientific Research Fund of Anhui Provincial Education Department (No.KJ2012A189).
文摘We develop a coarse grained (CG) approach for efficiently simulating calcium dynamics in the endoplasmic reticulum membrane based on a fine stochastic lattice gas model. By grouping neighboring microscopic sites together into CG cells and deriving CG reaction rates using local mean field approximation, we perform CG kinetic Monte Carlo (kMC) simulations and find the results of CG-kMC simulations are in excellent agreement with that of the microscopic ones. Strikingly, there is an appropriate range of coarse proportion rn, corresponding to the minimal deviation of the phase transition point compared to the microscopic one. For fixed m, the critical point increases monotonously as the system size increases, especially, there exists scaling law between the deviations of the phase transition point and the system size. Moreover, the CG approach provides significantly faster Monte Carlo simulations which are easy to implement and are directly related to the microscopics, so that one can study the system size effects at the cost of reasonable computational time.
文摘Semi-batch crystallization of 7-amino-desacetoxycephalosporanic acid (7-ADCA) is a complicated process, in which agglomeration occurs together with nucleation and crystal growth. To systematically study such a process, experiments were conducted to estimate the crystallization thermodynamics and kinetics, and then the process was simulated by a numerical method. The application of Monte Carlo concept in the algorithm to describe agglomeration event offers an alternative approach of solving the population balance, the intrinsic simplicity of which allows us to investigate several mechanisms and include several internal coordinates in the analysis. Furthermore, present study may be a valuable paradigm for other semi-batch crystallization processes.
基金supported by the Ministry of Science and Technology (No.2018YFA0208702)the National Natural Science Foundation of China (No.32090044,No. 21973085,No.21833007,No.21790350)+1 种基金Anhui Initiative in Quantum Information Technologies (AHY 090200)the Fundamental Research Funds for the Central Universities (WK2340000104)。
文摘Low-dimensional materials have excellent properties which are closely related to their dimensionality.However,the growth mechanism underlying tunable dimensionality from 2D triangles to 1D ribbons of such materials is still unrevealed.Here,we establish a general kinetic Monte Carlo model for transition metal dichalcogenides(TMDs) growth to address such an issue.Our model is able to reproduce several key findings in experiments,and reveals that the dimensionality is determined by the lattice mismatch and the interaction strength between TMDs and the substrate.We predict that the dimensionality can be well tuned by the interaction strength and the geometry of the substrate.Our work deepens the understanding of tunable dimensionality of low-dimensional materials and may inspire new concepts for the design of such materials with expected dimensionality.