为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建...为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率。为验证上述方法的有效性和可行性,开展了两个数值算例研究。结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度;所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度。展开更多
通过Jeffreys无信息先验分布描述了Gamma退化过程中参数的相关性,由贝叶斯模型得到各参数满条件分布,使用马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法得到参数后验期望估计,最后给出可靠度评价模型。工程实例表明,所得可靠...通过Jeffreys无信息先验分布描述了Gamma退化过程中参数的相关性,由贝叶斯模型得到各参数满条件分布,使用马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法得到参数后验期望估计,最后给出可靠度评价模型。工程实例表明,所得可靠性评估较独立情形更为保守,能够更早地给出产品修理建议。同时,仿真表明,可靠度要求越高,相关与独立情形寿命估计结果偏差越大,0.9999可靠度下偏差率最大可达9.26%。展开更多
文摘为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率。为验证上述方法的有效性和可行性,开展了两个数值算例研究。结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度;所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度。
文摘通过Jeffreys无信息先验分布描述了Gamma退化过程中参数的相关性,由贝叶斯模型得到各参数满条件分布,使用马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)方法得到参数后验期望估计,最后给出可靠度评价模型。工程实例表明,所得可靠性评估较独立情形更为保守,能够更早地给出产品修理建议。同时,仿真表明,可靠度要求越高,相关与独立情形寿命估计结果偏差越大,0.9999可靠度下偏差率最大可达9.26%。