期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
近红外光谱法快速无损测定奶粉的脂肪含量 被引量:13
1
作者 何佳艳 李亭 +3 位作者 郭长凯 胡蝶 邹婷婷 王莹 《食品与发酵工业》 CAS CSCD 北大核心 2017年第10期228-233,共6页
将11种奶粉原样配制及组成77个奶粉样本,以脂肪含量为检测指标,结合偏最小二乘法开展近红外光谱定量分析研究。2次异常光谱剔除,识别出异常样本(14,52,76)并予以剔除。74个奶粉样本进行平滑、导数和标准变量变换等6种光谱预处理,确定标... 将11种奶粉原样配制及组成77个奶粉样本,以脂肪含量为检测指标,结合偏最小二乘法开展近红外光谱定量分析研究。2次异常光谱剔除,识别出异常样本(14,52,76)并予以剔除。74个奶粉样本进行平滑、导数和标准变量变换等6种光谱预处理,确定标准正态变量变换结合Norris一阶导为最佳光谱预处理方式,其交叉验证均方根误差为0.354 7,交叉验证相关系数平方达到0.990 8;最佳前处理光谱结合3种波段选择方法优化模型性能,与全光谱模型形成对比,确定随机蛙跳(random frog,RF)为最佳波段选择方式,其模型的训练集和测试集相关系数平方分别为0.997 2和0.997 0,训练集和测试集均方根误差分别为0.186 2和0.198 2。结果表明:采用蒙特卡罗异常光谱剔除(Monte-Carlo sampling,MCS),光谱预处理结合随机蛙跳波段优化技术可提高奶粉脂肪近红外定量模型的泛化性和预测能力。 展开更多
关键词 近红外光谱技术 无损检测 脂肪 蒙特卡罗异常光谱剔除(monte-carlo sampling MCS) 随机蛙跳(random frog RF)
下载PDF
三维坐标异常数据判定方法的模拟与实验研究 被引量:3
2
作者 王林 马雪洁 +2 位作者 孟丹蕊 刘蓉 徐可欣 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第9期2774-2779,共6页
近红外漫反射光谱具有无创伤、连续、无感染、速度快等诸多优势,在人体成分无创伤检测方面有很好的应用前景。但是在测量过程中,随机噪声、干扰组分以及检测条件的改变等容易导致异常光谱。判定并剔除异常光谱对于提高近红外无创血液成... 近红外漫反射光谱具有无创伤、连续、无感染、速度快等诸多优势,在人体成分无创伤检测方面有很好的应用前景。但是在测量过程中,随机噪声、干扰组分以及检测条件的改变等容易导致异常光谱。判定并剔除异常光谱对于提高近红外无创血液成分检测的可靠性具有重要意义。首先分析了近红外漫反射光谱无创血糖检测中可能出现的异常数据类型,提出了一种综合利用马氏距离、光谱残差和化学值残差三个指标构造三维空间对样本集进行检验的三维坐标异常数据判定方法。其次,针对三层皮肤组织模型,在参数中设置人为失误、极端成分含量以及异常温度变化的样本,通过蒙特卡罗(MC)模拟程序得到一组正常模拟数据以及一组包含化学值异常和光谱异常的模拟数据,并利用三维坐标法进行异常数据的判定。结果显示,该方法能识别出全部异常样本,剔除这些异常样本后,偏最小二乘(PLS)校正模型的交互验证均方根误差(RMSECV)由21.2mmol·L^-1降低到1.1mmol·L^-1,初步验证了该方法的可行性。进一步,对三位受试者开展了口服葡萄糖耐量试验(OGTT),通过在测量受试者血糖参考值的同时同步采集其手指部位的漫反射光谱,获得了三组在体实验数据。并利用三维坐标法和蒙特卡罗交互验证法进行异常数据的判定和剔除,最后建立PLS模型比较两种异常数据判别方法的效果:剔除三维坐标法识别出的异常数据后,三组样本建立的校正模型的决定系数显著提升,RMSECV平均值由2.1mmol·L^-1降低至0.8mmol·L^-1,效果优于蒙特卡罗交互验证法的结果。这些结果表明,基于马氏距离、光谱残差和化学值残差的三维坐标异常数据判定方法能有效识别近红外无创血糖测量中的异常数据,在在体成分检测应用中有显著优势。 展开更多
关键词 近红外光谱 无创检测 异常光谱 三维坐标法 蒙特卡罗模拟
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部