期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Statistical Power Comparison of the Kolmogorov-Smirnov Two-Sample Test and the Wald Wolfowitz Test in Terms of Fixed Skewness and Fixed Kurtosis in Large Sample Sizes 被引量:1
1
作者 Otuken SENGER 《Chinese Business Review》 2013年第7期469-476,共8页
In this study, the statistical powers of Kolmogorov-Smimov two-sample (KS-2) and Wald Wolfowitz (WW) tests, non-parametric tests used in testing data from two independent samples, have been compared in terms of fi... In this study, the statistical powers of Kolmogorov-Smimov two-sample (KS-2) and Wald Wolfowitz (WW) tests, non-parametric tests used in testing data from two independent samples, have been compared in terms of fixed skewness and fixed kurtosis by means of Monte Carlo simulation. This comparison has been made when the ratio of variance is two as well as with equal and different sample sizes for large sample volumes. The sample used in the study is: (25, 25), (25, 50), (25, 75), (25, 100), (50, 25), (50, 50), (50, 75), (50, 100), (75, 25), (75, 50), (75, 75), (75, 100), (100, 25), (100, 50), (100, 75), and (100, 100). According to the results of the study, it has been observed that the statistical power of both tests decreases when the coefficient of kurtosis is held fixed and the coefficient of skewness is reduced while it increases when the coefficient of skewness is held fixed and the coefficient of kurtosis is reduced. When the ratio of skewness is reduced in the case of fixed kurtosis, the WW test is stronger in sample volumes (25, 25), (25, 50), (25, 75), (25, 100), (50, 75), and (50, 100) while KS-2 test is stronger in other sample volumes. When the ratio of kurtosis is reduced in the case of fixed skewness, the statistical power of WW test is stronger in volume samples (25, 25), (25, 75), (25, 100), and (75, 25) while KS-2 test is stronger in other sample volumes. 展开更多
关键词 Kolmogorov-Smimov Two-Sample (KS-2) test Wald Wolfowitz (WW) test statistical power SKEWNESS KURTOSIS
下载PDF
红壳竹与美竹的空间竞争关系研究
2
作者 郑轶文 戴长志 +3 位作者 苏小飞 张鑫 周默言 时培建 《西部林业科学》 CAS 北大核心 2022年第4期54-61,共8页
分布在同一区域亲缘关系较近的植物往往存在空间竞争,为了减少竞争的激烈程度,植物可以通过空间生态位分化以实现共存。以红壳竹和美竹为研究对象,计算特定类型概率的核估计式和执行蒙特-卡罗模拟来检验两种竹子是否存在空间生态位分离... 分布在同一区域亲缘关系较近的植物往往存在空间竞争,为了减少竞争的激烈程度,植物可以通过空间生态位分化以实现共存。以红壳竹和美竹为研究对象,计算特定类型概率的核估计式和执行蒙特-卡罗模拟来检验两种竹子是否存在空间生态位分离,并使用交互类型K函数对其空间关联性进行分析,选用幂函数和beta sigmoid函数分别描述红壳竹与美竹出笋量和时间的关系。结果显示:两种竹子新笋在空间分布上存在显著的隔离,且在给定的空间尺度上(0.2~0.5 m)呈现空间互斥关系。在调查的时间内,红壳竹竹笋呈幂函数增长模式,而美竹竹笋则呈受抑制性的sigmoid增长模式。根据研究结果预测,在给定的研究区域内美竹很可能会排挤掉,红壳竹成为单一优势物种。 展开更多
关键词 红壳竹 美竹 交互类型的K函数 蒙特-卡罗检验 生态位分化 特定类型概率
下载PDF
GOODNESS-OF-FIT TEST WITH GENETIC BACKGROUND 被引量:1
3
作者 WUJihua XIEMinyu PENGRong SUNZhihua 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2005年第1期27-34,共8页
The chi-square test is a well-known goodness-of-fit test. It is available for arbitrary alternative hypothesis, particularly for a very general alternative. However, when the alternative is a “one-sided” hypothesis,... The chi-square test is a well-known goodness-of-fit test. It is available for arbitrary alternative hypothesis, particularly for a very general alternative. However, when the alternative is a “one-sided” hypothesis, which usually appears in genetic linkage analysis, the chi-square test does not use the information offered by the one-sided hypothesis.Therefore, it is possible that an appropriate one-sided test, which uses the information,will be better than the chi-square test. This paper gives such an efficient one-sided test.Monte Carlo simulation results show that it is more powerful than the chi-square test, and its power has been increased by 30 percent as compared with that of the chi-square test in most situations. 展开更多
关键词 chi-square test goodness-of-fit test monte carlo simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部