In this paper, a detailed thermodynamic analysis of the pure low-temperature waste heat recovery generation system is presented. The parameters affecting the system performance are compared to obtain the most signific...In this paper, a detailed thermodynamic analysis of the pure low-temperature waste heat recovery generation system is presented. The parameters affecting the system performance are compared to obtain the most significant ones; furthermore, parameter values are optimized for the largest power generating capability of the system. It is found that the most important parameters are inlet flue gas temperature, steam pressure and the pinch point temperature difference. There is an optimal superheated steam pressure value for giving the maximum generation power per unit flue gas. With the increase of inlet flue gas temperature, the generating power increases and the optimized steam pressure rises as well. However, with increase in pinch point temperature difference, the generating power decreases and the optimized steam pressure decreases as well. The theoretical calculation provides a theoretical basis for the parameters optimization in the design of the pure low-temperature waste heat recovery eeneration swtem展开更多
Micro vapor chamber(MVC) for light emitting diodes(LEDs) can be designed and fabricated to enhance the heat dissipation efficiency and improve the reliability. In this paper, we used photoresist SU-8 and electroformin...Micro vapor chamber(MVC) for light emitting diodes(LEDs) can be designed and fabricated to enhance the heat dissipation efficiency and improve the reliability. In this paper, we used photoresist SU-8 and electroforming copper(Cu) to fabricate three kinds of wick structures, which are star, radiation and parallel ones, and the substrate is silicon with thickness of 0.5 mm. Electroforming Cu on silicon to make micro wick structure was a critical step, the ampere-hour factor was used, and accordingly the electroforming time was predicted. The composition of electroforming solution and parameters of electroforming were optimized too. After charging and packaging, thermal behavior tests were carried out to study the heat dissipation performance of MVCs. When the input power was 8 W, the parallel wick structure reached the equivalent temperature of 69.0 °C in 226 s, while the others were higher than that. The experimental results prove that the wick structures have significant influence on the heat transfer capability of MVCs.展开更多
文摘In this paper, a detailed thermodynamic analysis of the pure low-temperature waste heat recovery generation system is presented. The parameters affecting the system performance are compared to obtain the most significant ones; furthermore, parameter values are optimized for the largest power generating capability of the system. It is found that the most important parameters are inlet flue gas temperature, steam pressure and the pinch point temperature difference. There is an optimal superheated steam pressure value for giving the maximum generation power per unit flue gas. With the increase of inlet flue gas temperature, the generating power increases and the optimized steam pressure rises as well. However, with increase in pinch point temperature difference, the generating power decreases and the optimized steam pressure decreases as well. The theoretical calculation provides a theoretical basis for the parameters optimization in the design of the pure low-temperature waste heat recovery eeneration swtem
基金supported by the State Key Development Program for Basic Research of China(No.2011CB013105)
文摘Micro vapor chamber(MVC) for light emitting diodes(LEDs) can be designed and fabricated to enhance the heat dissipation efficiency and improve the reliability. In this paper, we used photoresist SU-8 and electroforming copper(Cu) to fabricate three kinds of wick structures, which are star, radiation and parallel ones, and the substrate is silicon with thickness of 0.5 mm. Electroforming Cu on silicon to make micro wick structure was a critical step, the ampere-hour factor was used, and accordingly the electroforming time was predicted. The composition of electroforming solution and parameters of electroforming were optimized too. After charging and packaging, thermal behavior tests were carried out to study the heat dissipation performance of MVCs. When the input power was 8 W, the parallel wick structure reached the equivalent temperature of 69.0 °C in 226 s, while the others were higher than that. The experimental results prove that the wick structures have significant influence on the heat transfer capability of MVCs.