An experimental system was setup to study the pressure field of unconfined vapor cloud explosions. The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film. In the center of the cloud was an ign...An experimental system was setup to study the pressure field of unconfined vapor cloud explosions. The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film. In the center of the cloud was an ignition electrode that met ISO6164 'Explosion Protection System' and NFPA68 'Guide for Venting of Deflagrations'. A data-acquisition system, with dynamic responding time less than 0.001s with 0.5% accuracy, recorded the pressure-time diagram of acetylene-air mixture explosion with stoichiometrical ratio. The initial cloud diameters varied from 60 cm to 300 cm. Based on the analysis of experimental data, the quantitative relationship is obtained for the cloud explosion pressure, the cloud radius and the distance from ignition point. Present results provide a useful way to evaluate the building damage caused by unconfined vapor cloud explosions and to determine the indispensable explosion grade in the application of multi-energy model.展开更多
Air temperature feedback results from the thermal-radiative coupling between the atmosphere and the surface and plays an important role in surface energy balance. This paper reveals the contribution of air temperature...Air temperature feedback results from the thermal-radiative coupling between the atmosphere and the surface and plays an important role in surface energy balance. This paper reveals the contribution of air temperature feedback to the global warming from 1980 to 2000. The air temperature feedback kernel, evaluated using the ERA-Interim reanalysis data, is used to discuss the physical mechanism for air temperature feedback, the dependency of the strength of air temperature feedback on the climatological spatial distributions of air temperature, water vapor and cloud content, and the contributions of air temperature feedback to rapid global warming. The coupling between temperature feedback and each of the external forcings and individual feedback processes will amplify the anomaly of direct energy flux convergence at the surface induced by the external forcings and individual processes. The air temperature feedback amplifies the initial surface warming due to the increase in CO2 concentration, ice and snow melting, increase in water vapor, and change in ocean heat storage. It also amplifies the surface warming due to the longwave radiaitve forcing associated with the increase in cloud cover, which acts to suppress the cooling of the shortwave effect of cloud forcing. Overall, temperature feedback plays an important role in the global warming from 1980 to2000, as the net positive contribution to the perturbation of global mean energy flux at the surface from the air temperature feedback is larger than the net negative contribution from external forcing and all non-temperature feedbacks.展开更多
基金Supported by the National Natural Science Foundation of China(No. 50076006).
文摘An experimental system was setup to study the pressure field of unconfined vapor cloud explosions. The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film. In the center of the cloud was an ignition electrode that met ISO6164 'Explosion Protection System' and NFPA68 'Guide for Venting of Deflagrations'. A data-acquisition system, with dynamic responding time less than 0.001s with 0.5% accuracy, recorded the pressure-time diagram of acetylene-air mixture explosion with stoichiometrical ratio. The initial cloud diameters varied from 60 cm to 300 cm. Based on the analysis of experimental data, the quantitative relationship is obtained for the cloud explosion pressure, the cloud radius and the distance from ignition point. Present results provide a useful way to evaluate the building damage caused by unconfined vapor cloud explosions and to determine the indispensable explosion grade in the application of multi-energy model.
基金supported by the National Key Scientific Research Plan of China (Grant No. 2014CB953900)the Natural Science Foundation of Guangdong Province (Grant No. 2017A030310571)the Fundamental Research Funds for the Central Universities (Grant No. 17LGPY21)
文摘Air temperature feedback results from the thermal-radiative coupling between the atmosphere and the surface and plays an important role in surface energy balance. This paper reveals the contribution of air temperature feedback to the global warming from 1980 to 2000. The air temperature feedback kernel, evaluated using the ERA-Interim reanalysis data, is used to discuss the physical mechanism for air temperature feedback, the dependency of the strength of air temperature feedback on the climatological spatial distributions of air temperature, water vapor and cloud content, and the contributions of air temperature feedback to rapid global warming. The coupling between temperature feedback and each of the external forcings and individual feedback processes will amplify the anomaly of direct energy flux convergence at the surface induced by the external forcings and individual processes. The air temperature feedback amplifies the initial surface warming due to the increase in CO2 concentration, ice and snow melting, increase in water vapor, and change in ocean heat storage. It also amplifies the surface warming due to the longwave radiaitve forcing associated with the increase in cloud cover, which acts to suppress the cooling of the shortwave effect of cloud forcing. Overall, temperature feedback plays an important role in the global warming from 1980 to2000, as the net positive contribution to the perturbation of global mean energy flux at the surface from the air temperature feedback is larger than the net negative contribution from external forcing and all non-temperature feedbacks.