Deep mining is an inevitable tendency in the development of coal industry. There are many heat damage problems with the increase of mining depth. The technology of using doublet wells, together with Heat Exchange Ma...Deep mining is an inevitable tendency in the development of coal industry. There are many heat damage problems with the increase of mining depth. The technology of using doublet wells, together with Heat Exchange Machine Systems (HEMSs), to store cold energy is a key to solve the heat damage problems in deep mines. Based on the geological conditions, thermodynamic and hydraulic parameters of Jiahe Mine, the isotherms in the period of cold energy storage and refrigeration and the volumes of cold water within different temperature ranges of the cold energy storage well were numerically analyzed. The results show that 1) with the same pumped and injected water volumes, the lower the temperature of injected water is, the larger the volume.of cold water in the cold energy storage well is. With the larger volume, the effect of cold energy storage is better. 2) the larger the volumes of pumped and reinjected water frigeration is better. And 3) without disturbance, the volume and temperature of cold water in the cold energy storage well can keep unchanged or have only a little change for a long time. Therefore the technology of doublet wells for cold energy storage is feasible and the cold energy storage aquifers can meet the requirement of the technology.展开更多
Based on testing the trace elements of the four main aquifers of underground water in Huaibei Coalfield by using the ICP-MS in the University of Science and Tech- nology of China(USTC), the relation of trace elements ...Based on testing the trace elements of the four main aquifers of underground water in Huaibei Coalfield by using the ICP-MS in the University of Science and Tech- nology of China(USTC), the relation of trace elements of the four main aquifers was analyzed by using maximum correlation coefficient method. The study indicates that the different aquifers posses respective microelement distributional characteristics, which caused with average contents of trace elements in the different aquifers are related to the pH of the underground water and the contents of trace elements of the wall rock source in the research area, so researching on the distribution of geographic space and the change trend of hydro-geochemical character of different aquifers and the relation of the geologic environment and the trace elements conduce to establish the disciminand model of water inrush source.展开更多
It is very important for secure mining under water bodies to study the effects of Iongwall mining on the underground water. In order to study this problem, piezometers for monitoring underground water levels were esta...It is very important for secure mining under water bodies to study the effects of Iongwall mining on the underground water. In order to study this problem, piezometers for monitoring underground water levels were established in an American coalmine. Large amounts of pre-mining and post-mining monitoring data were collected. Based on the data the effects of Iongwall mining on the underground water was studied. The results demonstrate that when the piezometer monitoring wells have an interburden thickness less than 72.7 m, the groundwater level decreases immediately to immeasurable levels and go dry after undermining. The height of the fractured zone in is 72.7-85.3 m in this geological and mining conditions. The results also show that the calculated value of fractured zone by the empirical formulae used in China is smaller than the actual results. Therefore, it is not always safe to use them in analysis of mining under water bodies.展开更多
This paper developed an improved combinatorial method called the best chromosome clone plus younger generation chromosome prepotency genetic algorithm (BCC-YGCP-GA) to evaluate aquifer parameters. This method is bas...This paper developed an improved combinatorial method called the best chromosome clone plus younger generation chromosome prepotency genetic algorithm (BCC-YGCP-GA) to evaluate aquifer parameters. This method is based on a decimal simple genetic algorithm (SGA). A synthetic example for unsteady-state flow in a two-dimensional, inhomogeneous, confined aquifer containing three hydraulically distinct zones, is used to develop data to test the model. The simulation utilizes SGA and BCC-YGCP-GA coupled to the finite element method to identify the mean zonal hydraulic conductivities, and storage coefficients of the three-compartment model. For this geometrically simple model, used as a prototype of more complex systems, the SGA does not reach convergence within 100 generations. Conversely, the convergence rate of the BCC-YGCD-GA model is very fast. The objective function value calculated by BCC-YGCD-GA is reduced to 1/1 O00th of the starting value within 100 generations, and the hydraulic conductivity and storage of three zones are within a few percent of the “true” values of the ideal model, highlighting the power of the method for aquifer parameterization.展开更多
After decades of development and technology advancement, coalbed methane has become an important source for U S. energy consumption. Especial in recent year, U S. coalbed methane production continues its healthy growt...After decades of development and technology advancement, coalbed methane has become an important source for U S. energy consumption. Especial in recent year, U S. coalbed methane production continues its healthy growth rate of about 10% per year. The paper takes emphasis on the technology developments and the engineering approaches of coalbed methane in the U S.展开更多
基金Project 50490270 supported by Key Project of National Natural Science Foundation of China
文摘Deep mining is an inevitable tendency in the development of coal industry. There are many heat damage problems with the increase of mining depth. The technology of using doublet wells, together with Heat Exchange Machine Systems (HEMSs), to store cold energy is a key to solve the heat damage problems in deep mines. Based on the geological conditions, thermodynamic and hydraulic parameters of Jiahe Mine, the isotherms in the period of cold energy storage and refrigeration and the volumes of cold water within different temperature ranges of the cold energy storage well were numerically analyzed. The results show that 1) with the same pumped and injected water volumes, the lower the temperature of injected water is, the larger the volume.of cold water in the cold energy storage well is. With the larger volume, the effect of cold energy storage is better. 2) the larger the volumes of pumped and reinjected water frigeration is better. And 3) without disturbance, the volume and temperature of cold water in the cold energy storage well can keep unchanged or have only a little change for a long time. Therefore the technology of doublet wells for cold energy storage is feasible and the cold energy storage aquifers can meet the requirement of the technology.
基金Supported by Physical Science Research Project of Department of Public Education Anhwei Province (2002kj263) and Topnotch Talented PersonsFund Anhui Province
文摘Based on testing the trace elements of the four main aquifers of underground water in Huaibei Coalfield by using the ICP-MS in the University of Science and Tech- nology of China(USTC), the relation of trace elements of the four main aquifers was analyzed by using maximum correlation coefficient method. The study indicates that the different aquifers posses respective microelement distributional characteristics, which caused with average contents of trace elements in the different aquifers are related to the pH of the underground water and the contents of trace elements of the wall rock source in the research area, so researching on the distribution of geographic space and the change trend of hydro-geochemical character of different aquifers and the relation of the geologic environment and the trace elements conduce to establish the disciminand model of water inrush source.
文摘It is very important for secure mining under water bodies to study the effects of Iongwall mining on the underground water. In order to study this problem, piezometers for monitoring underground water levels were established in an American coalmine. Large amounts of pre-mining and post-mining monitoring data were collected. Based on the data the effects of Iongwall mining on the underground water was studied. The results demonstrate that when the piezometer monitoring wells have an interburden thickness less than 72.7 m, the groundwater level decreases immediately to immeasurable levels and go dry after undermining. The height of the fractured zone in is 72.7-85.3 m in this geological and mining conditions. The results also show that the calculated value of fractured zone by the empirical formulae used in China is smaller than the actual results. Therefore, it is not always safe to use them in analysis of mining under water bodies.
文摘This paper developed an improved combinatorial method called the best chromosome clone plus younger generation chromosome prepotency genetic algorithm (BCC-YGCP-GA) to evaluate aquifer parameters. This method is based on a decimal simple genetic algorithm (SGA). A synthetic example for unsteady-state flow in a two-dimensional, inhomogeneous, confined aquifer containing three hydraulically distinct zones, is used to develop data to test the model. The simulation utilizes SGA and BCC-YGCP-GA coupled to the finite element method to identify the mean zonal hydraulic conductivities, and storage coefficients of the three-compartment model. For this geometrically simple model, used as a prototype of more complex systems, the SGA does not reach convergence within 100 generations. Conversely, the convergence rate of the BCC-YGCD-GA model is very fast. The objective function value calculated by BCC-YGCD-GA is reduced to 1/1 O00th of the starting value within 100 generations, and the hydraulic conductivity and storage of three zones are within a few percent of the “true” values of the ideal model, highlighting the power of the method for aquifer parameterization.
文摘After decades of development and technology advancement, coalbed methane has become an important source for U S. energy consumption. Especial in recent year, U S. coalbed methane production continues its healthy growth rate of about 10% per year. The paper takes emphasis on the technology developments and the engineering approaches of coalbed methane in the U S.