It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a rese...It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a reservoir pressure-sensitive effect. In order to optimize the starting time of water injection in low permeability reservoirs, this effect of pressure change on rock permeability of low permeability reservoirs was, at first, studied by physical simulation. It was shown that the rock permeability decreases exponentially with an increase in formation pressure. Secondly, we conducted a reservoir engineering study, from which we obtained analytic relationships between formation pressure, oil production rate, water production rate and water injection rate. After our physical, theoretical and economical analyses, we proposed an approach which takes the pressure-sensitive effect into consideration and designed the optimum starting time of water injection, based on the principle of material balance. Finally, the corresponding software was developed and applied to one block of the Jiangsu Oilfield. It is shown that water injection, in advance of production, can decrease the adverse impact of the pressure-sensitive effect on low permeability reservoir development. A water-flooding project should be preferably initiated in advance of production for no more than one year and the optimum ratio of formation pressure to initial formation pressure should be maintained at a level between 1.05 and 1.2.展开更多
The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-str...The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-stress transport(SST) k-ω model) and the volume of fluid(VOF) multiphase model are employed to simulate the three-dimensional unsteady turbulent flow in a pump sump. The dynamic processes of air entrainment are simulated under conditions of relatively high discharge and low submergence; the mechanism of air entrainment is discussed in detail. Then suppression means for air entrainment is adopted by placing a circular plate on the intake pipe at three different heights. The results show: the position and structure of the free-surface vortices, sidewall-attached vortices, back wall-attached vortices, and floor-attached vortices calculated by SST k-ω turbulence model agree well with the experimental data. The two main contributors for air entrainment are pressure difference and vortex strength. By placing a circular plate in the middle of the intake pipe under water, air entrainment is suppressed because vortex strength is reduced.展开更多
An integrated program was established to design a combustor for a liquid rocket engine and to analyze regenerative cooling results on a preliminary design level.Properties of burnt gas from a kerosene-LOx mixture in t...An integrated program was established to design a combustor for a liquid rocket engine and to analyze regenerative cooling results on a preliminary design level.Properties of burnt gas from a kerosene-LOx mixture in the combustor and rocket performance were calculated from CEA which is the code for the calculation of chemical equilibrium.The heat transfer of regenerative cooling was analyzed by using SUPERTRAPP code for coolant properties and by one-dimensional correlations of the heat transfer coefficient from the combustor liner to the coolant.Profiles of the combustors of F-1 and RS-27A engines were designed from similar input data and the present results were compared to actual data for validation.Finally,the combustors of 30 tonf class,75 tonf class and 150 tonf class were designed from the required thrust,combustion chamber,exit pressure and mixture ratio of propellants.The wall temperature,heat flux and pressure drop were calculated for heat transfer analysis of regenerative cooling using the profiles.展开更多
基金Projects 2003BA613-07-05 supported by the Program of National "Fifteen" Science and Technology 04E7029 by the CNPC Innovation Foundation
文摘It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a reservoir pressure-sensitive effect. In order to optimize the starting time of water injection in low permeability reservoirs, this effect of pressure change on rock permeability of low permeability reservoirs was, at first, studied by physical simulation. It was shown that the rock permeability decreases exponentially with an increase in formation pressure. Secondly, we conducted a reservoir engineering study, from which we obtained analytic relationships between formation pressure, oil production rate, water production rate and water injection rate. After our physical, theoretical and economical analyses, we proposed an approach which takes the pressure-sensitive effect into consideration and designed the optimum starting time of water injection, based on the principle of material balance. Finally, the corresponding software was developed and applied to one block of the Jiangsu Oilfield. It is shown that water injection, in advance of production, can decrease the adverse impact of the pressure-sensitive effect on low permeability reservoir development. A water-flooding project should be preferably initiated in advance of production for no more than one year and the optimum ratio of formation pressure to initial formation pressure should be maintained at a level between 1.05 and 1.2.
基金supported by the National Natural Science Foundation of China(Grant No.51422906)
文摘The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-stress transport(SST) k-ω model) and the volume of fluid(VOF) multiphase model are employed to simulate the three-dimensional unsteady turbulent flow in a pump sump. The dynamic processes of air entrainment are simulated under conditions of relatively high discharge and low submergence; the mechanism of air entrainment is discussed in detail. Then suppression means for air entrainment is adopted by placing a circular plate on the intake pipe at three different heights. The results show: the position and structure of the free-surface vortices, sidewall-attached vortices, back wall-attached vortices, and floor-attached vortices calculated by SST k-ω turbulence model agree well with the experimental data. The two main contributors for air entrainment are pressure difference and vortex strength. By placing a circular plate in the middle of the intake pipe under water, air entrainment is suppressed because vortex strength is reduced.
基金supported by the Output-oriented Project of Collaborative Research Program with Higher Education Partners of Korea Aerospace Research Insti-tute in 2009
文摘An integrated program was established to design a combustor for a liquid rocket engine and to analyze regenerative cooling results on a preliminary design level.Properties of burnt gas from a kerosene-LOx mixture in the combustor and rocket performance were calculated from CEA which is the code for the calculation of chemical equilibrium.The heat transfer of regenerative cooling was analyzed by using SUPERTRAPP code for coolant properties and by one-dimensional correlations of the heat transfer coefficient from the combustor liner to the coolant.Profiles of the combustors of F-1 and RS-27A engines were designed from similar input data and the present results were compared to actual data for validation.Finally,the combustors of 30 tonf class,75 tonf class and 150 tonf class were designed from the required thrust,combustion chamber,exit pressure and mixture ratio of propellants.The wall temperature,heat flux and pressure drop were calculated for heat transfer analysis of regenerative cooling using the profiles.