期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CFD的日光温室墙体蓄热层厚度的确定 被引量:17
1
作者 许红军 曹晏飞 +4 位作者 李彦荣 阿拉帕提 高杰 蒋卫杰 邹志荣 《农业工程学报》 EI CAS CSCD 北大核心 2019年第4期175-184,共10页
日光温室墙体蓄放热能力的优劣取决于墙体蓄放热特性与蓄热层厚度,确定日光温室蓄热层厚度,对于推进日光温室墙体改进意义重大。该研究以温室内太阳辐射与室外气温作为输入条件,按照试验温室实际尺寸和相关关系进行参数化建模并模拟计... 日光温室墙体蓄放热能力的优劣取决于墙体蓄放热特性与蓄热层厚度,确定日光温室蓄热层厚度,对于推进日光温室墙体改进意义重大。该研究以温室内太阳辐射与室外气温作为输入条件,按照试验温室实际尺寸和相关关系进行参数化建模并模拟计算不同月份墙体蓄热层厚度。选择乌鲁木齐地区2018年1月-4月典型晴天进行测试,以温室地面、墙体表面的太阳辐射为输入条件,室外空气温度为边界条件,利用AutodeskCFD软件对晴天9:00至次日9:00的温室砖墙内部温度场进行了模拟,并通过对比墙体内部0、10、20、30、40、50 cm处温度测点的实测值与模拟值验证模拟结果的准确性。结果表明,温室墙体模拟结果与测试结果吻合度较高,1月9日、2月9日、3月6日各层平均误差均在1.5℃以下,4月6日实际值与模拟值误差较大,模拟值较实际值滞后,趋势随着深度与墙体温度的升高而更加明显。在温室墙体材料、结构、室内外的光温环境的共同影响下,温室墙体传热是一个复杂的非稳态过程。砖墙温室与土墙温室类似,墙体可划分为"保温层、稳定层、蓄热层",各层的厚度与墙体蓄热材料、保温材料的热物性有关。对墙体温度场、各层的温度衰减因子以及延迟时间分析可知,墙体厚度在0~30 cm范围内,墙体温度波动较为明显,墙体厚度大于30 cm时,温室墙体一天内温度波动较为平缓,波幅较小。随着气温回升,温室墙体内部温度整体提高,各层温度波动相差不大。在温室结构、保温性能不变的情况下,温室蓄热层厚度及波动情况受外界光温环境的综合影响较小。综上所述,采用CFD模拟温室墙体温度场的变化,并根据温室墙体温度场变化确定温室墙体蓄热层厚度是可行的,可靠性较高。该研究可为其他区域优选温室墙体结构,推进日光温室墙体改进提供依据和参考。 展开更多
关键词 温室 墙体 计算机仿真 流体力学 蓄热层厚度 传热性能
下载PDF
严寒地区保温型塑料大棚土壤蓄放热特性
2
作者 田东坤 宋卫堂 +3 位作者 王平智 程杰宇 梁超 赵淑梅 《农业工程学报》 EI CAS CSCD 北大核心 2022年第3期189-196,共8页
土壤温度及蓄放热特性是保温型塑料大棚土壤传热特性的重要体现。因此,为定性、定量地阐明棚内土壤温度变化规律和蓄放热特性,在严寒地区生产性大棚内进行了试验测试,并通过构建大棚土壤热量平衡简化方程、温差拟合等方法对土壤蓄放热... 土壤温度及蓄放热特性是保温型塑料大棚土壤传热特性的重要体现。因此,为定性、定量地阐明棚内土壤温度变化规律和蓄放热特性,在严寒地区生产性大棚内进行了试验测试,并通过构建大棚土壤热量平衡简化方程、温差拟合等方法对土壤蓄放热特性进行了理论分析。研究结果表明:1)土壤温度波幅随深度的增加呈乘幂函数递减,通过计算得出测试地区大棚土壤的蓄热层平均厚度约为0.55~0.80m;2)棚内土壤横向地中传热损失占土壤总热损失的9.8%~24.7%,若将此部分热量用于提高土壤温度,则棚内土壤平均温度可提高0.3~0.5℃;3)天气条件对土壤蓄放热性能的影响较大:晴天日累积蓄热量比多云天多37.2%~50.6%左右,日累积放热量比多云天多44.7%~64.3%;晴天的最大蓄热流量和日累积蓄热量均是阴天的4倍以上,与蓄热性能相比,晴天与阴天的土壤放热性能差异较小。土壤蓄放热量主要受表层土壤与气温温差的影响,棚内外气温差对其影响较小。 展开更多
关键词 土壤 温度 保温型大棚 蓄热层厚度 热量平衡估算方程 热损失 蓄放热特性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部