Photodynamic therapy plays an important role in cancer treatment.In this work,methylene blue(MB)-embedded calcium carbonate nanorods(CaCO_3-MB NRs)have been synthesized for p H-responsive photodynamic therapy and ultr...Photodynamic therapy plays an important role in cancer treatment.In this work,methylene blue(MB)-embedded calcium carbonate nanorods(CaCO_3-MB NRs)have been synthesized for p H-responsive photodynamic therapy and ultrasound imaging.The morphology of CaCO_3-MB NRs can be controlled by modulating the concentration of Na_2CO_3 aqueous solution.The generation of effective reactive oxygen species(ROS)were confirmed by 1,3-diphenylisobenzofuran(DPBF)probe.Both photodynamic therapy performance and echogenic performance of CaCO_3-MB NRs were investigated to confirm the feasibility of CaCO_3-MB nanohybrids for ultrasound image-guided photodynamic therapy.展开更多
By adsorbing chitosan(CS)-functionalized Prussian blue(PB) nanoparticles(CS/PB NPs) complexing DNA onto the surface of gas encapsulated microbubbles(MBs), a multifunctional gene delivery system of MBs@CS/PB/DNA was fa...By adsorbing chitosan(CS)-functionalized Prussian blue(PB) nanoparticles(CS/PB NPs) complexing DNA onto the surface of gas encapsulated microbubbles(MBs), a multifunctional gene delivery system of MBs@CS/PB/DNA was fabricated for photothermally enhanced gene transfection through ultrasound-targeted microbubble destruction. CS/PB NPs of(2.69 ± 0.49) nm could complex DNA effectively when the mass ratio was2:1. It was found that MBs@CS/PB/DNA could enhance ultrasound imaging greatly both in vitro and in vivo. In addition, MBs@CS/PB/DNA could be disrupted by applying a higher-intensity ultrasound irradiation to release CS/PB/DNA, which could effectively transform the nearinfrared(NIR) light into heat to assist the uptake of CS/PB/DNA by cells. With the aid of ultrasound irradiation and NIR light irradiation, the gene transfection efficiency was significantly enhanced to(43.08 ± 1.13) %, much higher than polyethylenimine. Moreover, MBs@CS/PB/DNA showed excellent biocompatibility, encouraging the further exploration of MBs@CS/PB/DNA to be a platform for combined ultrasound image, photothermal therapy, drug delivery, and gene therapy.展开更多
基金supported by the National Key Research and Development Program of China (2017YFA0106100, 2016YFA0201501)National Natural Science Foundation of China (51325304, 51373017, 51473014, 51521062, 51773013)+1 种基金the Fundamental Research Funds for the Central Universities (BHYC1705A)Higher Education and High-quality and World-class Universities (PY201603)
文摘Photodynamic therapy plays an important role in cancer treatment.In this work,methylene blue(MB)-embedded calcium carbonate nanorods(CaCO_3-MB NRs)have been synthesized for p H-responsive photodynamic therapy and ultrasound imaging.The morphology of CaCO_3-MB NRs can be controlled by modulating the concentration of Na_2CO_3 aqueous solution.The generation of effective reactive oxygen species(ROS)were confirmed by 1,3-diphenylisobenzofuran(DPBF)probe.Both photodynamic therapy performance and echogenic performance of CaCO_3-MB NRs were investigated to confirm the feasibility of CaCO_3-MB nanohybrids for ultrasound image-guided photodynamic therapy.
基金supported by the National Natural Science Foundation of China(81371580 and 21273014)the National Natural Science Foundation for Distinguished Young Scholars(81225011)the State Key Program of National Natural Science of China(81230036)
文摘By adsorbing chitosan(CS)-functionalized Prussian blue(PB) nanoparticles(CS/PB NPs) complexing DNA onto the surface of gas encapsulated microbubbles(MBs), a multifunctional gene delivery system of MBs@CS/PB/DNA was fabricated for photothermally enhanced gene transfection through ultrasound-targeted microbubble destruction. CS/PB NPs of(2.69 ± 0.49) nm could complex DNA effectively when the mass ratio was2:1. It was found that MBs@CS/PB/DNA could enhance ultrasound imaging greatly both in vitro and in vivo. In addition, MBs@CS/PB/DNA could be disrupted by applying a higher-intensity ultrasound irradiation to release CS/PB/DNA, which could effectively transform the nearinfrared(NIR) light into heat to assist the uptake of CS/PB/DNA by cells. With the aid of ultrasound irradiation and NIR light irradiation, the gene transfection efficiency was significantly enhanced to(43.08 ± 1.13) %, much higher than polyethylenimine. Moreover, MBs@CS/PB/DNA showed excellent biocompatibility, encouraging the further exploration of MBs@CS/PB/DNA to be a platform for combined ultrasound image, photothermal therapy, drug delivery, and gene therapy.