[Objective] The aim was to explore effects of silicon at different concentrations on morphology and photosynthetic physiological mechanism of japonica rice. [Method] Seedlings of japonica rice were treated with silico...[Objective] The aim was to explore effects of silicon at different concentrations on morphology and photosynthetic physiological mechanism of japonica rice. [Method] Seedlings of japonica rice were treated with silicon at different concentrations (0, 30, 80, 130 and 180 mg/L of sodium silicate); silicon contents were measured with Molybdenum blue spectrophotometric method in root, stem and leaf; plant height, root length and number in different treatment groups were measured with tools; chlorophyll a and b, and a/b in leaf and stem of rice in different groups were measured. [Result] Silicon contents in vegetative organs were as follows: stem〉leaf〉 root; when silicon was 80 mg/L, japonica ecotype was shortest; when silicon was 30 mg/L, root length of the rice was shortest and root number was least; when silicon was 30 mg/L, contents of chlorophyll a and b were highest and chlorophyll a/b achieved the peak when silicon was 80 mg/L. [Conclusion] Silicon at proper concen- tration would improve lodging-resistance and efficiency of photosynthesis, further enhancing yield of japonica rice.展开更多
An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary ...An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary analysis in order to study the effect of ancillary ligand of the oxadiazole-based picolinic acid derivative on optophysical properties of its iridium complex, and further to obtain an iridium complex with highly-efficient blue emission. The thermal stability, UV absorption and photoluminescent properties of this iridium complex were investigated. Compared with iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2](picolinate) reported as a highly-efficient blue electroluminescent material, this iridium complex bearing an oxadiazole-based picolinic acid derivative presents higher thermal stability, more intense UV absorption at 291 nm and similar photoluminescent spectrum peaked at 469 nm. This indicates that tuning ancillary ligand of picolinic acid with an oxadiazole unit can improve the optophysical properties of its iridium complex.展开更多
A new anthracene derivative 9,10-bis[3,5-di(4-tert-butylphenyl)phenyl]anthracene (BPPA) was synthesized via Suzuki coupling reaction and characterized by 1H NMR spectrum,mass spectrum,and elemental analysis.BPPA exhib...A new anthracene derivative 9,10-bis[3,5-di(4-tert-butylphenyl)phenyl]anthracene (BPPA) was synthesized via Suzuki coupling reaction and characterized by 1H NMR spectrum,mass spectrum,and elemental analysis.BPPA exhibits deep-blue emission both in solution and in solid thin film.This compound has a non-planar structure that results in high thermal stability and the phenomenon of polymorphism.The non-doped device based on this material shows stable deep-blue emission with the 1931 Commission international de I'Eclairage (CIE) coordinate of (0.15,0.05) under different applied voltages.The device exhibits the maximum external quantum efficiency of 2.2% at 14.9 mA/cm2 with luminance of 105 cd/m2.展开更多
Two pure hydrocarbon molecules of l,3,5-tris(9-phenyl-9H-fluoren-9-yl)benzene(mTPFB)and l,3,5-tris(2-tert-butyl-9-phenyl-9H-fluoren-9-yl)benzene(tBu-mTPFB)were synthesized.Due to the conjugation blocked connection mod...Two pure hydrocarbon molecules of l,3,5-tris(9-phenyl-9H-fluoren-9-yl)benzene(mTPFB)and l,3,5-tris(2-tert-butyl-9-phenyl-9H-fluoren-9-yl)benzene(tBu-mTPFB)were synthesized.Due to the conjugation blocked connection mode and rigid/bulky substitutions,these two materials possess high triplet energy,enabling them as good hosts for blue phosphor in PhOLEDs.By studying their thermal,electrochemical,electronic absorption and photoluminescent properties,it was found that the influence of the inert tert-butyl group on material photoelectrical properties is negligible.For instance,mTPFB and tBu-mTPFB showed very similar absorption and emission profiles,with almost the same bandgap,triplet energy and energy levels.However,the encapsulation of tert-butyl on the 2-position of 9-phenylfluorene enhanced material thermal stability.Most importantly,carrier transport properties were improved dramatically,as proved by the mono carrier device.Blue phosphorescent OLEDs hosted by tBu-mTPFB showed external quantum efficiency of 15.2%and current efficiency of 23.0 cd/A,which were much higher than that of the OLEDs based on mTPFB with the analogous structure.展开更多
We demonstrate high-brightness blue organic light emitting diodes(OLEDs) using two types of guest-host systems. A series of blue OLEDs were fabricated using three organic emitters of dibenz anthracene(perylene), di(4-...We demonstrate high-brightness blue organic light emitting diodes(OLEDs) using two types of guest-host systems. A series of blue OLEDs were fabricated using three organic emitters of dibenz anthracene(perylene), di(4-fluorophenyl) amino-di(styryl) biphenyl(DSB) and 4,4'-bis[2-(9-ethyl-3-carbazolyl)vinyl]biphenyl(BCzV Bi) doped into two hosting materials of 4,4'-bis(9-carbazolyl) biphenyl(CBP) and 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole(PBD) as blue emitting layers, respectively. We achieve three kinds of devices with colors of deep-blue, pure-blue and sky-blue with the Commission Internationale de L'Eclairage(CIE) coordinates of(0.16, 0.10),(0.15, 0.15) and(0.17, 0.24), respectively, by employing PBD as host material. In addition, we present a microcavity device using the PBD guest-host system and achieve high-purity blue devices with narrowed spectrum.展开更多
基金Supported by Outstanding Young and Middle-aged Talent Program of Hubei Provincal Department of Education(Q20102501)~~
文摘[Objective] The aim was to explore effects of silicon at different concentrations on morphology and photosynthetic physiological mechanism of japonica rice. [Method] Seedlings of japonica rice were treated with silicon at different concentrations (0, 30, 80, 130 and 180 mg/L of sodium silicate); silicon contents were measured with Molybdenum blue spectrophotometric method in root, stem and leaf; plant height, root length and number in different treatment groups were measured with tools; chlorophyll a and b, and a/b in leaf and stem of rice in different groups were measured. [Result] Silicon contents in vegetative organs were as follows: stem〉leaf〉 root; when silicon was 80 mg/L, japonica ecotype was shortest; when silicon was 30 mg/L, root length of the rice was shortest and root number was least; when silicon was 30 mg/L, contents of chlorophyll a and b were highest and chlorophyll a/b achieved the peak when silicon was 80 mg/L. [Conclusion] Silicon at proper concen- tration would improve lodging-resistance and efficiency of photosynthesis, further enhancing yield of japonica rice.
基金Projects(20772101,50473046) supported by the National Natural Science Foundation of ChinaProject(2007FJ3017) supported by the Hunan Provincial Science Foundation, ChinaProject(07C764) supported by the Science Foundation of the Education Department of Hunan Province,China
文摘An iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2][6-(6'-(4"-( 5"-phenyl- 1", 3", 4"-oxadiazole-2"-yl) phenoxy) hexyloxy picolinate) was synthesized and characterized by IH NMR and elementary analysis in order to study the effect of ancillary ligand of the oxadiazole-based picolinic acid derivative on optophysical properties of its iridium complex, and further to obtain an iridium complex with highly-efficient blue emission. The thermal stability, UV absorption and photoluminescent properties of this iridium complex were investigated. Compared with iridium (Ⅲ) bis[(4,6-difluorophenyl)pyridinato-N, C^2](picolinate) reported as a highly-efficient blue electroluminescent material, this iridium complex bearing an oxadiazole-based picolinic acid derivative presents higher thermal stability, more intense UV absorption at 291 nm and similar photoluminescent spectrum peaked at 469 nm. This indicates that tuning ancillary ligand of picolinic acid with an oxadiazole unit can improve the optophysical properties of its iridium complex.
基金supported by the National Natural Science Foundation of China (50773090,50825304,51033007)
文摘A new anthracene derivative 9,10-bis[3,5-di(4-tert-butylphenyl)phenyl]anthracene (BPPA) was synthesized via Suzuki coupling reaction and characterized by 1H NMR spectrum,mass spectrum,and elemental analysis.BPPA exhibits deep-blue emission both in solution and in solid thin film.This compound has a non-planar structure that results in high thermal stability and the phenomenon of polymorphism.The non-doped device based on this material shows stable deep-blue emission with the 1931 Commission international de I'Eclairage (CIE) coordinate of (0.15,0.05) under different applied voltages.The device exhibits the maximum external quantum efficiency of 2.2% at 14.9 mA/cm2 with luminance of 105 cd/m2.
基金supported by the National Natural Science Foundation of China(61474064,61504063)funding from Nanjing University of Posts and Telecommunications (NY214085,NY214177)+5 种基金the Natural Science Foundation of Jiangsu Province(BK20150836)the National Basic Research Program of China (2015CB932200)the National Synergistic Innovation Center for Advanced Materials(SICAM)Synergistic Innovation Center for Organic Electronics and Information DisplaysPriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,YX03001)funding from Key Laboratory for Organic Electronics & Information Displays
文摘Two pure hydrocarbon molecules of l,3,5-tris(9-phenyl-9H-fluoren-9-yl)benzene(mTPFB)and l,3,5-tris(2-tert-butyl-9-phenyl-9H-fluoren-9-yl)benzene(tBu-mTPFB)were synthesized.Due to the conjugation blocked connection mode and rigid/bulky substitutions,these two materials possess high triplet energy,enabling them as good hosts for blue phosphor in PhOLEDs.By studying their thermal,electrochemical,electronic absorption and photoluminescent properties,it was found that the influence of the inert tert-butyl group on material photoelectrical properties is negligible.For instance,mTPFB and tBu-mTPFB showed very similar absorption and emission profiles,with almost the same bandgap,triplet energy and energy levels.However,the encapsulation of tert-butyl on the 2-position of 9-phenylfluorene enhanced material thermal stability.Most importantly,carrier transport properties were improved dramatically,as proved by the mono carrier device.Blue phosphorescent OLEDs hosted by tBu-mTPFB showed external quantum efficiency of 15.2%and current efficiency of 23.0 cd/A,which were much higher than that of the OLEDs based on mTPFB with the analogous structure.
基金supported by the National Natural Science Foundation of China(Nos.51505270 and 61504077)the National Basic Research Program of China(No.2015CB655005)the Project of Science and Technology Commission of Shanghai Municipality(No.15590500500)
文摘We demonstrate high-brightness blue organic light emitting diodes(OLEDs) using two types of guest-host systems. A series of blue OLEDs were fabricated using three organic emitters of dibenz anthracene(perylene), di(4-fluorophenyl) amino-di(styryl) biphenyl(DSB) and 4,4'-bis[2-(9-ethyl-3-carbazolyl)vinyl]biphenyl(BCzV Bi) doped into two hosting materials of 4,4'-bis(9-carbazolyl) biphenyl(CBP) and 2-(4-biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole(PBD) as blue emitting layers, respectively. We achieve three kinds of devices with colors of deep-blue, pure-blue and sky-blue with the Commission Internationale de L'Eclairage(CIE) coordinates of(0.16, 0.10),(0.15, 0.15) and(0.17, 0.24), respectively, by employing PBD as host material. In addition, we present a microcavity device using the PBD guest-host system and achieve high-purity blue devices with narrowed spectrum.