A cavity ring-down spectrometer (CRDS) is constructed with a single-mode continuous-wave Ti:Sapphire laser. It allows attaining a minimum detectable absorption of 1.8× 10^-10cm^-1. The spectrometer is applied ...A cavity ring-down spectrometer (CRDS) is constructed with a single-mode continuous-wave Ti:Sapphire laser. It allows attaining a minimum detectable absorption of 1.8× 10^-10cm^-1. The spectrometer is applied to record the overtone spectrum of ^12C2H2 in the 12240- 12350 cm-1. Compared with the previous CRDS and intra-cavity laser absorption spectroscopy studies in the same region, the present measurement achieved better sensitivity and better precision as well. As a result, the ro-vibrational parameters of the high overtone bands of acetylene at 12290.12, 12311.82, and 12350.61 cm^-1 have been refined. The advantages of the present CRD spectrometer is also demonstrated by the newly observed and well characterized perturbation on the f component of the very weak band near 12289 cm^-1. The quantitative measurement capability of the spectrometer is verified with the measurement of the water lines and employed to give the absolute band intensities of those three acetylene bands.展开更多
基金V. ACKNOWLEDGMENTS We are indebted to D. Romanini and S. Kassi for helpful discussion. This work was supported by the National Natural Science Foundation of China (No.20903085 and No.20533060), Chinese Ministry of Science and Technology (No.2006CB922001 and No.2007CB815203), and the Fok Ying Tong Education Foundation (No. 101013).
文摘A cavity ring-down spectrometer (CRDS) is constructed with a single-mode continuous-wave Ti:Sapphire laser. It allows attaining a minimum detectable absorption of 1.8× 10^-10cm^-1. The spectrometer is applied to record the overtone spectrum of ^12C2H2 in the 12240- 12350 cm-1. Compared with the previous CRDS and intra-cavity laser absorption spectroscopy studies in the same region, the present measurement achieved better sensitivity and better precision as well. As a result, the ro-vibrational parameters of the high overtone bands of acetylene at 12290.12, 12311.82, and 12350.61 cm^-1 have been refined. The advantages of the present CRD spectrometer is also demonstrated by the newly observed and well characterized perturbation on the f component of the very weak band near 12289 cm^-1. The quantitative measurement capability of the spectrometer is verified with the measurement of the water lines and employed to give the absolute band intensities of those three acetylene bands.