美国Cyanotech公司从美国Memphis大学获得了生产销售用基因工程制造的杀死蚊子幼虫的蓝藻植物的世界性独占权。该大学的Edward Stevens,Jr.使用编码来自Bacillus thuringiensis var. israelensis(BTi)的杀虫蛋白的基因性状转化蓝藻植物S...美国Cyanotech公司从美国Memphis大学获得了生产销售用基因工程制造的杀死蚊子幼虫的蓝藻植物的世界性独占权。该大学的Edward Stevens,Jr.使用编码来自Bacillus thuringiensis var. israelensis(BTi)的杀虫蛋白的基因性状转化蓝藻植物Synechococcus。BTi是特异地作用于蚊虫及黑色昆虫(等)。蓝藻植物将成为蚊子幼虫的食物源,将包被来自BTi基因的藻类喷洒在池内。展开更多
Cyanobacterial blooms are a global problem, with their occurrence tightly tied to nutrient loading. We cultured Microcystis aeruginosa FACHB-905 in growth medium with either inorganic(orthophosphate) or organic(β-gly...Cyanobacterial blooms are a global problem, with their occurrence tightly tied to nutrient loading. We cultured Microcystis aeruginosa FACHB-905 in growth medium with either inorganic(orthophosphate) or organic(β-glycerophosphate or polyphosphate) phosphorus and at different N:P ratios with 50:1, 30:1, 16:1, 4:1 and 1:4, serving as the phosphorus source. Fluorescence parameters were measured to determine the response of cellular responses to nutrient stress. Scanning electron microscopy(SEM) and estimates of antioxidant activity were employed to examine potential mechanisms of physical change. The results demonstrate that inorganic phosphorus was more bioavailable to M. aeruginosa relative to organic phosphorus in culture. The highest cell concentration(2.21×10~6 cells/mL), chlorophyll-a(0.39 pg/cell) and phycocyanin(1.57 pg/cell) quotas and high levels of chlorophyll fluorescence parameters( rETR, E_k, α, φ_(PSⅡ) and F_v/F_m) were obtained when phosphorus was supplied as K_2 HPO_4 at a N:P ratio of 16–30. Organic sources of phosphorus(β-glycerophosphate and polyphosphate) were bioavailable to M. aeruginosa. In addition, too concentrated orthophosphate(N:P=1:4) resulted in the oxidative stress and lipid peroxidation of cell membrane(identified by the antioxidant system activity), and the photosynthetic activity declined consequently. This study has demonstrated the effects of different phosphorus chemistries and N:P ratios on the cyanobacterial growth, photosynthetic activity and cell physiology, which could be an effective tool for predicting cyanobacterial dominance or N-deficiency in natural lakes(due to the superior ability of cyanobacteria for dissolved N and fix atmospheric N in some cases).展开更多
An annual investigation on phytoplankton communities was conducted to reveal the effects of nutrients on phytoplankton assemblages in Lake Taihu,East China. A total of 78 phytoplankton taxa were identified. Phytoplank...An annual investigation on phytoplankton communities was conducted to reveal the effects of nutrients on phytoplankton assemblages in Lake Taihu,East China. A total of 78 phytoplankton taxa were identified. Phytoplankton biomass was higher in the northern part of the lake than in the southern part. Cyanobacteria and Bacillariophyta alternated dominance in the northern area,where algal blooms often appear,and co-dominated in the southern area. In the northern part,the proportions of cyanobacteria and Bacillariophyta varied significantly in total biovolume,both along the phosphorus(P) gradient,and between total nitrogen levels(≤3 mg/L and >3 mg/L TN). The proportions of cyanobacteria and Bacillariophyta had no signif icant variations in total biovolume along P and N(nitrogen) gradients in the southern part. Correlation analysis and CCA results revealed that P was the key factor regulating phytoplankton community structure. Nitrogen was also important for the phytoplankton distribution pattern. It was concluded that nutrient structure was heterogeneous in space and shaped the distribution pattern of phytoplankton in the lake. Both exogenous P and internally sourced Prelease needs to be considered. N reduction should be considered simultaneously with P control to efficiently reduce eutrophication and algal blooms.展开更多
In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies....In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies. In the present study, the growth and photosynthetic activity of the submerged aquatic plant Ceratophyllum oryzetorum Kom. in different cell densities of cyanobacterial bloom are studied. The results show that the plant length and fresh mass of C. oryzetorum are promoted by low cyanobacterial cell densities. Medium and high cyanobacterial cell densities, on the contrary, act as inhibitory. Furthermore, the photosynthetic activity of C. oryzetorum is strongly inhibited by high cyanobacterial cell densities. To a certain extent, the growth of cyanobacteria is inhibited by C. oryzetorurn, but no significant effect is found in this study.展开更多
In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concent...In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was 〉109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m^2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m^2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of K asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.展开更多
We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population (M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City, China ...We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population (M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City, China from December 2011 to October 2012. The results show that species belonging to the phylum Cyanophyta occupied the maximum proportion of phytoplankton biomass, and that the dominant population in the water source area of Chaohu City was M. aeruginosa. The variation in cyanobacterial biomass from March to August 2012 was well fitted to the logistic growth model. The growth rate of cyanobacteria was the highest in June, and the biomass of cyanobacteria reached a maximum in August. From February to March 2012, the main form of M. aeruginosa was the single-cell form; M. aeruginosa colonies began to appear from April, and blooms appeared on the water surface in May. The maximum diameter of the colonies was recorded in July, and then gradually decreased from August. The diameter range ofM. aeruginosa colonies was 18.37-237.77μm, and most of the colonies were distributed in the range 20-200μm, comprising 95.5% of the total number of samples. Temperature and photosynthetically active radiation may be the most important factors that influenced the annual variation in M. aeruginosa biomass and forms. The suitable temperature for cyanobaeterial growth was in the range of 15-30℃. In natural water bodies, photosynthetically active radiation had a significant positive influence on the colonial diameter of M. aeruginosa (P〈0.01).展开更多
文摘美国Cyanotech公司从美国Memphis大学获得了生产销售用基因工程制造的杀死蚊子幼虫的蓝藻植物的世界性独占权。该大学的Edward Stevens,Jr.使用编码来自Bacillus thuringiensis var. israelensis(BTi)的杀虫蛋白的基因性状转化蓝藻植物Synechococcus。BTi是特异地作用于蚊虫及黑色昆虫(等)。蓝藻植物将成为蚊子幼虫的食物源,将包被来自BTi基因的藻类喷洒在池内。
基金Supported by the National Key R&D Program of China(No.2016YFC0502700)the Major Program of National Social Science Foundation of China(No.14ZDB140)the National Science Foundation(USA)(Nos.IOS1451528,DEB1240870)
文摘Cyanobacterial blooms are a global problem, with their occurrence tightly tied to nutrient loading. We cultured Microcystis aeruginosa FACHB-905 in growth medium with either inorganic(orthophosphate) or organic(β-glycerophosphate or polyphosphate) phosphorus and at different N:P ratios with 50:1, 30:1, 16:1, 4:1 and 1:4, serving as the phosphorus source. Fluorescence parameters were measured to determine the response of cellular responses to nutrient stress. Scanning electron microscopy(SEM) and estimates of antioxidant activity were employed to examine potential mechanisms of physical change. The results demonstrate that inorganic phosphorus was more bioavailable to M. aeruginosa relative to organic phosphorus in culture. The highest cell concentration(2.21×10~6 cells/mL), chlorophyll-a(0.39 pg/cell) and phycocyanin(1.57 pg/cell) quotas and high levels of chlorophyll fluorescence parameters( rETR, E_k, α, φ_(PSⅡ) and F_v/F_m) were obtained when phosphorus was supplied as K_2 HPO_4 at a N:P ratio of 16–30. Organic sources of phosphorus(β-glycerophosphate and polyphosphate) were bioavailable to M. aeruginosa. In addition, too concentrated orthophosphate(N:P=1:4) resulted in the oxidative stress and lipid peroxidation of cell membrane(identified by the antioxidant system activity), and the photosynthetic activity declined consequently. This study has demonstrated the effects of different phosphorus chemistries and N:P ratios on the cyanobacterial growth, photosynthetic activity and cell physiology, which could be an effective tool for predicting cyanobacterial dominance or N-deficiency in natural lakes(due to the superior ability of cyanobacteria for dissolved N and fix atmospheric N in some cases).
基金Supported by the National Natural Science Foundation of China(No.31123001)the National Basic Research Program of China(973 Program)(No.2008CB418000)
文摘An annual investigation on phytoplankton communities was conducted to reveal the effects of nutrients on phytoplankton assemblages in Lake Taihu,East China. A total of 78 phytoplankton taxa were identified. Phytoplankton biomass was higher in the northern part of the lake than in the southern part. Cyanobacteria and Bacillariophyta alternated dominance in the northern area,where algal blooms often appear,and co-dominated in the southern area. In the northern part,the proportions of cyanobacteria and Bacillariophyta varied significantly in total biovolume,both along the phosphorus(P) gradient,and between total nitrogen levels(≤3 mg/L and >3 mg/L TN). The proportions of cyanobacteria and Bacillariophyta had no signif icant variations in total biovolume along P and N(nitrogen) gradients in the southern part. Correlation analysis and CCA results revealed that P was the key factor regulating phytoplankton community structure. Nitrogen was also important for the phytoplankton distribution pattern. It was concluded that nutrient structure was heterogeneous in space and shaped the distribution pattern of phytoplankton in the lake. Both exogenous P and internally sourced Prelease needs to be considered. N reduction should be considered simultaneously with P control to efficiently reduce eutrophication and algal blooms.
基金Supported by the Innovation Project of CAS (No.KZCX2-YW-426)a Provincial Project of Hubei (No. 2006AA305A0402)the National Basic Research Program of China (973 Program, No. 2002CB 412306)
文摘In aquatic ecosystems, macrophytes and phytoplankton are main primary producers, in which macrophyte plays an important role in maintaining clear water state, while phytoplankton often dominates in turbid waterbodies. In the present study, the growth and photosynthetic activity of the submerged aquatic plant Ceratophyllum oryzetorum Kom. in different cell densities of cyanobacterial bloom are studied. The results show that the plant length and fresh mass of C. oryzetorum are promoted by low cyanobacterial cell densities. Medium and high cyanobacterial cell densities, on the contrary, act as inhibitory. Furthermore, the photosynthetic activity of C. oryzetorum is strongly inhibited by high cyanobacterial cell densities. To a certain extent, the growth of cyanobacteria is inhibited by C. oryzetorurn, but no significant effect is found in this study.
基金Supported by the Research Institute for East Asia Environments of Kyushu University and Mitsubishi Corporation in Japan
文摘In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was 〉109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m^2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m^2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of K asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.
基金Supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China(Nos.2012ZX07103-005-01,2012ZX07103-004-02)the National Natural Science Foundation of China(Nos.41171366,41471075)the Science Foundation of Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(No.NIGLAS2012135013)
文摘We investigated seasonal variations in cyanobacterial biomass and the forms of its dominant population (M. aeruginosa) and their correlation with environmental factors in the water source area of Chaohu City, China from December 2011 to October 2012. The results show that species belonging to the phylum Cyanophyta occupied the maximum proportion of phytoplankton biomass, and that the dominant population in the water source area of Chaohu City was M. aeruginosa. The variation in cyanobacterial biomass from March to August 2012 was well fitted to the logistic growth model. The growth rate of cyanobacteria was the highest in June, and the biomass of cyanobacteria reached a maximum in August. From February to March 2012, the main form of M. aeruginosa was the single-cell form; M. aeruginosa colonies began to appear from April, and blooms appeared on the water surface in May. The maximum diameter of the colonies was recorded in July, and then gradually decreased from August. The diameter range ofM. aeruginosa colonies was 18.37-237.77μm, and most of the colonies were distributed in the range 20-200μm, comprising 95.5% of the total number of samples. Temperature and photosynthetically active radiation may be the most important factors that influenced the annual variation in M. aeruginosa biomass and forms. The suitable temperature for cyanobaeterial growth was in the range of 15-30℃. In natural water bodies, photosynthetically active radiation had a significant positive influence on the colonial diameter of M. aeruginosa (P〈0.01).