由于容迟网络(DTN)为满足极端情况下的端到端服务,使得容迟网络的路由机制复杂而且有别于现存的各种网络。基于洪泛的蔓延(Epidemic)路由,由于其广播特性,网络容易拥塞,基于效用(utility)的单复制路由机制,开销小,但是递交率不高,延迟...由于容迟网络(DTN)为满足极端情况下的端到端服务,使得容迟网络的路由机制复杂而且有别于现存的各种网络。基于洪泛的蔓延(Epidemic)路由,由于其广播特性,网络容易拥塞,基于效用(utility)的单复制路由机制,开销小,但是递交率不高,延迟大。文中根据这两种路由机制的优点,结合数据包产生的初期应尽最大努力递交这一思想,提出了一种可变效用的路由机制。通过ONE仿真器仿真了蔓延路由,PRoPHET路由,Spray and Wait路由机制以及文中提出的可变效用路由机制,结果表明文中提出的可变效用路由机制在递交率、平均延迟两个指标上表现的非常出色。展开更多
(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with...(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.展开更多
文摘由于容迟网络(DTN)为满足极端情况下的端到端服务,使得容迟网络的路由机制复杂而且有别于现存的各种网络。基于洪泛的蔓延(Epidemic)路由,由于其广播特性,网络容易拥塞,基于效用(utility)的单复制路由机制,开销小,但是递交率不高,延迟大。文中根据这两种路由机制的优点,结合数据包产生的初期应尽最大努力递交这一思想,提出了一种可变效用的路由机制。通过ONE仿真器仿真了蔓延路由,PRoPHET路由,Spray and Wait路由机制以及文中提出的可变效用路由机制,结果表明文中提出的可变效用路由机制在递交率、平均延迟两个指标上表现的非常出色。
基金Project(51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘(TiB2+Al2O3)/NiAl composites were synthesized by self-propagation high-temperature synthesis, and their phase compositions, microstructures and evolution modes were studied. The microstructures and shapes vary with the TiB2+Al2O3 content in the NiAl matrix. TiB2 particles take a great variety of elementary shapes such as white bars, plates, herringbones, regular cubes and cuboids. These results outline a strategy of self-assembly processes in real time to build diversified microstructures. Some TiB2 grains in sizes of 2-5μm are embeded in Al2O3 clusters, while a small number of TiB2 particles disperse in the NiAl matrix. It is believed that the higher the TiB2+Al2O3 content is, the more the regular shapes and homogeneous distributions of TiB2 and Al2O3 will be present in the NiAl matrix.