期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于迁移学习的蔬菜图像识别方法 被引量:4
1
作者 赖佩霞 王晓东 章联军 《宁波大学学报(理工版)》 CAS 2019年第5期36-41,共6页
为解决蔬菜识别领域缺少带标签样本的问题,提出了一种基于迁移学习的图像识别方法.首先,将原始数据集利用数据增强扩大样本数据量后引入到大规模数据集上的预训练模型.针对迁移过程中高层特征的领域特定性导致的网络泛化性能差,通过加... 为解决蔬菜识别领域缺少带标签样本的问题,提出了一种基于迁移学习的图像识别方法.首先,将原始数据集利用数据增强扩大样本数据量后引入到大规模数据集上的预训练模型.针对迁移过程中高层特征的领域特定性导致的网络泛化性能差,通过加入两层自适应层参数初始化后重新训练得到基本模型;对该基本模型再利用参数冻结的迁移方式进一步调优参数,得到用于蔬菜图像识别的最终网络模型.实验表明,基于CaffeNet和ResNet10两个小型网络的迁移策略可以较好地处理小样本的蔬菜图像识别,训练得到的模型准确率分别为94.97%、96.69%.与其他迁移算法及传统的神经网络方法相比,该算法具有更高的识别性以及更强的鲁棒性. 展开更多
关键词 蔬菜图像识别 卷积神经网络 迁移学习 小样本
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部