Photocatalytic technology holds great promise in renewable energy and environmental protection.Herein,we report the synthesis of a class of polyaniline-sensitized BiOCI core/shell nanosheets with visible-light photoca...Photocatalytic technology holds great promise in renewable energy and environmental protection.Herein,we report the synthesis of a class of polyaniline-sensitized BiOCI core/shell nanosheets with visible-light photocatalytic activity by a one-step oxidative polymerization method and show how the hybrid nanosheet boosts the photocatalytic activity and stability for degradation of Rhodamine B (RhB).In this unique structure,the ultrathin polyaniline (PANI)as a shell with the thickness of about 1-2nm,can widen the response of the catalyst to visible light to boost photocatalysis and the BiOCI core can promote the separation of photogenerated carriers from the PANI.We demonstrate that the optimized BiOCl/ PANI core/shell photocatalyst shows nearly three times higher photocatalytic activity for the degradation of RhB than pure BLOC1and also shows high stability.This work provides a new strategy for the design of a highly efficient hybrid photo- catalyst driven by visible light.展开更多
基金supported by the National Natural Science Foundation of China (51772255) Hunan Natural Science Foundation (2016JJ3123)+1 种基金 the National Key Research and Development Program of China (2016YFB0100201)the start-up supports from Peking University and Young Thousand Talented Program
文摘Photocatalytic technology holds great promise in renewable energy and environmental protection.Herein,we report the synthesis of a class of polyaniline-sensitized BiOCI core/shell nanosheets with visible-light photocatalytic activity by a one-step oxidative polymerization method and show how the hybrid nanosheet boosts the photocatalytic activity and stability for degradation of Rhodamine B (RhB).In this unique structure,the ultrathin polyaniline (PANI)as a shell with the thickness of about 1-2nm,can widen the response of the catalyst to visible light to boost photocatalysis and the BiOCI core can promote the separation of photogenerated carriers from the PANI.We demonstrate that the optimized BiOCl/ PANI core/shell photocatalyst shows nearly three times higher photocatalytic activity for the degradation of RhB than pure BLOC1and also shows high stability.This work provides a new strategy for the design of a highly efficient hybrid photo- catalyst driven by visible light.