A method for fabricating arrays of microcapsules covalently immobilized onto chemically patterned substrates was developed.The core-shell microparticles with poly(allylamine hydrochloride)(PAH) as the outermost layer ...A method for fabricating arrays of microcapsules covalently immobilized onto chemically patterned substrates was developed.The core-shell microparticles with poly(allylamine hydrochloride)(PAH) as the outermost layer were obtained by layer-by-layer (LbL) assembly,which were further treated with glutaraldehyde to endow the particles with abundant aldehyde groups on their surfaces.The particles were then covalently coupled to the chemically patterned regions with amino groups created by microcontact printing (μCP).After dissolution of the core particles,arrays of the hollow microcapsules with unchanged structures were obtained.These arrays could stand rigorous environmental conditions of higher ionic strength,and lower and higher pH values.Thus,the technique could be possibly applied to exploiting chips of microcontainers or microreactors in sensing technology.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.20434030 and 20774084)the National Basic Research Program(973)of China(No. 2005CB623902)the National Science Fund for Distinguished Young Scholars of China(No.50425311)
文摘A method for fabricating arrays of microcapsules covalently immobilized onto chemically patterned substrates was developed.The core-shell microparticles with poly(allylamine hydrochloride)(PAH) as the outermost layer were obtained by layer-by-layer (LbL) assembly,which were further treated with glutaraldehyde to endow the particles with abundant aldehyde groups on their surfaces.The particles were then covalently coupled to the chemically patterned regions with amino groups created by microcontact printing (μCP).After dissolution of the core particles,arrays of the hollow microcapsules with unchanged structures were obtained.These arrays could stand rigorous environmental conditions of higher ionic strength,and lower and higher pH values.Thus,the technique could be possibly applied to exploiting chips of microcontainers or microreactors in sensing technology.