期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
自适应惩罚薄板样条回归模型
1
作者 丁梦珍 《怀化学院学报》 2021年第5期12-21,共10页
经典惩罚薄板样条回归模型对每个基函数系数施加相同惩罚权,没有考虑数据在纵向上的局部波动特征,使得模型对复杂数据的估计缺乏自适应性.基于样条基函数的几何意义,引入节点的局部区域内的数据在纵向上极差的变式,构造出局部惩罚权重... 经典惩罚薄板样条回归模型对每个基函数系数施加相同惩罚权,没有考虑数据在纵向上的局部波动特征,使得模型对复杂数据的估计缺乏自适应性.基于样条基函数的几何意义,引入节点的局部区域内的数据在纵向上极差的变式,构造出局部惩罚权重并嵌入到惩罚回归模型的惩罚项当中,提出了自适应惩罚薄板样条回归模型.模型在数据波动较剧烈的区域会给予拟合曲面较小的惩罚权重,而在数据波动较平缓的区域,则会给予拟合曲面较大的惩罚权重,从而由数据结构所驱动的惩罚权重可以提高模型的自适应能力,使得拟合曲面能够充分地反映数据的局部波动特征.模拟的结果显示了自适应惩罚回归模型的拟合精度显著高于经典的惩罚回归模型. 展开更多
关键词 薄板样条回归 惩罚样条回归 自适应性
下载PDF
基于集成学习的交互式图像分割 被引量:3
2
作者 刘金平 陈青 +1 位作者 张进 唐朝晖 《电子学报》 EI CAS CSCD 北大核心 2016年第7期1649-1655,共7页
针对交互式图像分割人工标记示例匮乏、不同目标区域难以均衡标记,单一分类器难以获得有效分割结果的问题,提出一种多分类器集成学习的交互式图像分割方法.采用多元自适应回归样条(MARS)方法构造第一个分类器;同时引入光滑薄板样条回归... 针对交互式图像分割人工标记示例匮乏、不同目标区域难以均衡标记,单一分类器难以获得有效分割结果的问题,提出一种多分类器集成学习的交互式图像分割方法.采用多元自适应回归样条(MARS)方法构造第一个分类器;同时引入光滑薄板样条回归函数(TPSR)构造与之互补的第二个分类器,综合组成bagging集成学习器,以降低单一分类器对噪声的敏感度并进一步提高人工标记样本特征空间的利用率.随后,基于半监督学习中的聚类假设,结合bagging多学习器并联特点,提出一种REG-Boosting半监督学习算法,实现半监督图像分割.在不同数据集上的验证性和对比性实验表明所提方法的有效性和优越性. 展开更多
关键词 交互式图像分割 多元自适应回归样条 集成学习 薄板样条回归 半监督学习
下载PDF
Interactive image segmentation with a regression based ensemble learning paradigm 被引量:2
3
作者 Jin ZHANG Zhao-hui TANG +2 位作者 Wei-hua GUI Qing CHEN Jin-ping LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第7期1002-1020,共19页
To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. Howeve... To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. However, when the foreground and background share some similar areas in color, the fine segmentation result of conventional interactive methods usually relies on the increase o f manual labels. This paper presents a novel interactive image segmentation method via a regression-based ensemble model with semi-supervised learning. The task is formulated as a non-linear problem integrating two complementary spline regressors and strengthening the robustness of each regressor via semi-supervised learning. First, two spline regressors with a complementary nature are constructed based on multivariate adaptive regression splines (MARS) and smooth thin plate spline regression (TPSR). Then, a regressor boosting method based on a clustering hypothesis and semi-supervised learning is proposed to assist the training of MARS and TPSR by using the region segmentation information contained in unlabeled pixels. Next, a support vector regression (SVR) based decision fusion model is adopted to integrate the results of MARS and TPSR. Finally, the GraphCut is introduced and combined with the SVR ensemble results to achieve image segmentation. Extensive experimental results on benchmark datasets of BSDS500 and Pascal VOC have demonstrated the effectiveness of our method, and the com- parison with experiment results has validated that the proposed method is comparable with the state-of-the-art methods for in- teractive natural image segmentation. 展开更多
关键词 Interactive image segmentation Multivariate adaptive regression splines (MARS) Ensemble learning Thin-platespline regression (TPSR) Semi-supervised learning Support vector regression (SVR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部