Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The strtuctures of the films were characterized with X-ray diffraction (XRD), Ra...LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The strtuctures of the films were characterized with X-ray diffraction (XRD), Raman spectroscopy and scarming electron microscopy (SEM) techniques. It was shown that the 700 ℃- annealed LiCo0.8M0.2O2 has an α-NaFeO2 like layered structure. All-solid-state thin-film batteries (TFBs) were fabrieated with these films as the cathode and their eleetroctemical performances were evaluated. It was found that doping of electrochemically active Ni and inactive Zr has different effects on the structural and elcctrochemical properties of the LiCoO2 cathode films. Ni doping increases the discharge capacity of the film while Zr doping improves its cycling stability.展开更多
The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the p...The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment. TIN(002) peak shifts toward low angle direction and TiN(111) peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films. The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface. The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce. The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.展开更多
Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world,...Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world, especially, in the industrialized countries. Good accomplishment has been obtained in the cost reduction of PV systems, for example in 1974, systems cost (100~150) $/W. In 1981, such systems cost less than (10~30) $/W, and now they cost less than 5 $/W. However, more R&D efforts are still necessary, to achieve large-scale cost-effective production of PV systems to make it competitive with diesel generation of electricity,although PV systems have proven to be competitive in rural and remote areas. In this paper, an overview on high efficiency solar cell technologies will be presented.展开更多
CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties ...CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VISNIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.展开更多
An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic sola...An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection.展开更多
The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The c...The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The continuously operated radial flow cell consisted of a borehole electrode positioned 50μm above an internal reflection element enabling operando FTIR spectroscopy.It is identified as a suitable tool for facile and reproducible screening of electrocatalysts under well-defined conditions,additionally providing access to the selectivities in complex reaction networks such as glycerol oxidation.The fast product identification by ATR-IR spectroscopy was validated by the more time-consuming quantitative HPLC analysis of the pumped electrolyte.High degrees of glycerol conversion were achieved under the applied laminar flow conditions using 0.1 M glycerol and 1 M KOH in water and a flow rate of 5μL min^(–1).Conversion and selectivity were found to depend on the catalyst loading,which determined the catalyst layer thickness and roughness.The highest loading of 210μg cm^(–2)resulted in 73%conversion and a higher formate selectivity of almost 80%,which is ascribed to longer residence times in rougher films favoring readsorption and C–C bond scission.The lowest loading of 13μg cm^(–2)was sufficient to reach 63%conversion,a lower formate selectivity of 60%,and,correspondingly,higher selectivities of C_(2)species such as glycolate amounting to 8%.Thus,only low catalyst loadings resulting in very thin films in the fewμm thickness range are suitable for reliable catalyst screening.展开更多
A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain p...A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.展开更多
A mathematic model is developed which is applied to analyze the main factors that affect electrode performance and to account for the process of reaction and mass transfer in gas-diffusion electrodes in contact with l...A mathematic model is developed which is applied to analyze the main factors that affect electrode performance and to account for the process of reaction and mass transfer in gas-diffusion electrodes in contact with liquid electrolytes. Electrochemical Thiele modulus φ^2 and electrochemical effectiveness factor η are introduced to elucidate the effects of diffusion on electrochemical reaction and utilization of the gas-diffusion electrode. Profile of the reactant along axial direction is discussed, dependence of electrode potential V on current density J, are predicated by means of the newly developed mathematical model.展开更多
This paper reported some results about intrinsic nanocrystalline silicon thin films deposited by high frequency (HF) sputtering on p-type c-Si substrates at low temperature. Samples were examined by atomic force micro...This paper reported some results about intrinsic nanocrystalline silicon thin films deposited by high frequency (HF) sputtering on p-type c-Si substrates at low temperature. Samples were examined by atomic force microscopy (AFM), X-ray diffraction (XRD), infrared absorption, and ellipsometry. XRD measurements show that this film has a new microstructure, which is different from the films deposited by other methods. The ellipsometry result gives that the optical band gap of the film is about 2.63 eV. In addition, the n-type nc-Si∶H/p-type c-Si heterojunction solar cell, which has open circuit voltage (U oc ) of 558 mV and short circuit current intensity (I sc ) of 29 mA/cm2, was obtained based on the nanocrystalline silicon thin film. Irradiated under AM1.5, 100 mW/cm2 light intensity, the U oc , I sc , and FF can keep stable for 10 h.展开更多
Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0...Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0.92 were prepared by middle frequency alternating current magnetron sputtering with Cu-In alloy target, then CuInSe2 absorbers for solar cells were formed by selenization process in selenium atmosphere. Scanning electron microscope and energy dispersive X-ray spectroscope were used respectively to observe the surface morphologies and determine the compositions of both Cu-In precursors and CuInSe2 thin films. Their microstructures were characterized by X-ray diffractometry and Raman spectroscope. The results show that Cu-In precursors are mainly composed of (Cu11In9) phase with In-rich solid solution. Stoichiometric CuInSe2 thin films with a homogeneous element distribution and single chalcopyrite phase can be synthesized from a segregated Cu-In precursor film with an ideal total mole ratio of Cu to In of 0.92. CuInSe2 thin film shows P-type conductivity and its resistivity reaches 1.2×103Ω·cm.展开更多
CdS thin films were prepared by chemical-bath-deposited method and the effect of temperature and time on the properties of CdS thin films was studied. Independent of the deposited temperature, the growth was mainly co...CdS thin films were prepared by chemical-bath-deposited method and the effect of temperature and time on the properties of CdS thin films was studied. Independent of the deposited temperature, the growth was mainly controlled by the ion-by-ion growth mechanism at the beginning of the film deposition, then the cluster-by-cluster mechanism came to be dominant. The growth rate increased faster with the increasing of temperature until the thickness reached the limitation, then thickness instead become thinner. The scanning electron micro- scope results revealed that the morphology of the CdS film changed from pinholes to rough, inhomogeneous surface with increasing deposition time and deposition temperature. The X- ray diffraction results showed the film structure was a mixture of two phases: hexagonal and cubic, and it was very important to controll deposition time to the film's crystal phase. All films in depth of approxilnate 100 nm existed above 65% transmittance, the absorption edge became "red-shift" with temperature rising. At 60 and 70℃, with 20 min deposited-time, the energy band gap was more than 2.42 eV and decreased with time, while at 80 and 90℃ the energy band gap was less than 2.42 eV and increased little when the time changed from 10min to 15 nfin at 80℃.展开更多
Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnC12.2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the pr...Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnC12.2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the properties of the films obtained by using the two doping compounds was performed by using I-V characteristics in the dark at room temperature, AC measurements, and transmittance. It is found that the films prepared by using HF have smaller resistivity, lower impedance and they are less capacitive than films prepared by using NH4F. In addition, these films have higher transmittance, higher optical bandgap energy and narrower Urbach tail width. These results are interesting for the use of SnO2:F as forecontact in CdS/CdTe solar cells.展开更多
The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline si...The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.展开更多
The thickness of TiO2 film is vital to realize the optimization on photovoltaic performance of dye sensitized solar cells (DSSCs). Herein, the process of charge separation in DSSCs was simulated by using a drift-dif...The thickness of TiO2 film is vital to realize the optimization on photovoltaic performance of dye sensitized solar cells (DSSCs). Herein, the process of charge separation in DSSCs was simulated by using a drift-diffusion model. This model allows multiple-trapping diffu- sion of photo-generated electrons, as well as the back reaction with the electron acceptors in electrolyte, to be mimicked in both steady and non-steady states. Numerical results on current-voltage characteristics allow power conversion efficiency to be maximized by varying the thickness of TiO2 film. Charge collection efficiency is shown to decrease with film thick- ness, whereas the flux of electron injection benefits from the film thickening. The output of photocurrent is actually impacted by the two factors. Furthermore, recombination rate constant is found to affect the optimized film thickness remarkably. Thicker TiO2 film is suitable to the DSSCs in which back reaction is suppressed sufficiently. On the contrary, the DSSCs with the redox couple showing fast electron interception require thinner film to alleviate the charge loss via recombination. At open circuit, electron density is found to decrease with film thickness, which engenders not only the reduction of photovoltage but also the increase of electron lifetime.展开更多
The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logar...The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).展开更多
A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombardi...A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombarding the growing, deposited thin film electrode with a low energy hydrogen ion beam An amorphous LaNi4 hydride thin film electrode has been prepared by this Hydrogen Ion Beam Assisted Deposition (HIBAD) technique. The electrochemical discharge capacity and cycle life of this electrode in a 6 M KOH solution surpass previously reported values for La-Ni thin film electrodes prepared by other deposition methods.展开更多
Atomic force microscope (AFM) is able to produce three-dimensional digital data in both force-mode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force...Atomic force microscope (AFM) is able to produce three-dimensional digital data in both force-mode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force-mode to image the repulsive and attractive force patterns. The cross sections of polycrystalline CdS/CdTe and amorphous silicon heterojunction solar cells are observed with AFM. In case of short circuit, the microstructures of different layers in the samples are clearly displayed. When the cells are open circuit, the topographical images are altered, the potential outline due to the space charge in junction region is observed. Obviously, AFM can be employed to investigate experimentally built-in potential in junction of semiconductor devices, such as solar cells.展开更多
The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon...The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.展开更多
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
基金supported Science Foundation of China by the National Natural(No.20203006).
文摘LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The strtuctures of the films were characterized with X-ray diffraction (XRD), Raman spectroscopy and scarming electron microscopy (SEM) techniques. It was shown that the 700 ℃- annealed LiCo0.8M0.2O2 has an α-NaFeO2 like layered structure. All-solid-state thin-film batteries (TFBs) were fabrieated with these films as the cathode and their eleetroctemical performances were evaluated. It was found that doping of electrochemically active Ni and inactive Zr has different effects on the structural and elcctrochemical properties of the LiCoO2 cathode films. Ni doping increases the discharge capacity of the film while Zr doping improves its cycling stability.
基金This work is supported by nology Cooperation Plan of LKS[2013]15), the 2012 Doctor Normal University of China the Science and Tech- Guizhou Province (J- Foundation of Guizhou (Xun Zhou) Scholars of Ministry of Education of China, Ph.D. Programs Foundation of Ministry of Education of China (No.20120171120011), the Open Fund of the State Key Laboratory on Integrated Optoelectronics of Jilin University (No.IOKL2013KF14), the National Natural Science Foundation of China (No.61273310).
文摘The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment. TIN(002) peak shifts toward low angle direction and TiN(111) peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films. The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface. The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce. The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.
文摘Photovoltaics are currently recognized as a top ranking technology among the new energies. Photovoltaics have the potential to eventually make a considerable contribution to the power generation capacity in the world, especially, in the industrialized countries. Good accomplishment has been obtained in the cost reduction of PV systems, for example in 1974, systems cost (100~150) $/W. In 1981, such systems cost less than (10~30) $/W, and now they cost less than 5 $/W. However, more R&D efforts are still necessary, to achieve large-scale cost-effective production of PV systems to make it competitive with diesel generation of electricity,although PV systems have proven to be competitive in rural and remote areas. In this paper, an overview on high efficiency solar cell technologies will be presented.
文摘CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 ℃. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VISNIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.
文摘An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection.
文摘The influence of the drop-casted nickel boride catalyst loading on glassy carbon electrodes was investigated in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in alkaline glycerol electrooxidation.The continuously operated radial flow cell consisted of a borehole electrode positioned 50μm above an internal reflection element enabling operando FTIR spectroscopy.It is identified as a suitable tool for facile and reproducible screening of electrocatalysts under well-defined conditions,additionally providing access to the selectivities in complex reaction networks such as glycerol oxidation.The fast product identification by ATR-IR spectroscopy was validated by the more time-consuming quantitative HPLC analysis of the pumped electrolyte.High degrees of glycerol conversion were achieved under the applied laminar flow conditions using 0.1 M glycerol and 1 M KOH in water and a flow rate of 5μL min^(–1).Conversion and selectivity were found to depend on the catalyst loading,which determined the catalyst layer thickness and roughness.The highest loading of 210μg cm^(–2)resulted in 73%conversion and a higher formate selectivity of almost 80%,which is ascribed to longer residence times in rougher films favoring readsorption and C–C bond scission.The lowest loading of 13μg cm^(–2)was sufficient to reach 63%conversion,a lower formate selectivity of 60%,and,correspondingly,higher selectivities of C_(2)species such as glycolate amounting to 8%.Thus,only low catalyst loadings resulting in very thin films in the fewμm thickness range are suitable for reliable catalyst screening.
文摘A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.
基金This researchis supported by Shanghai Education Committee(06-OZ-003)Shanghai Key Subject(p1501)
文摘A mathematic model is developed which is applied to analyze the main factors that affect electrode performance and to account for the process of reaction and mass transfer in gas-diffusion electrodes in contact with liquid electrolytes. Electrochemical Thiele modulus φ^2 and electrochemical effectiveness factor η are introduced to elucidate the effects of diffusion on electrochemical reaction and utilization of the gas-diffusion electrode. Profile of the reactant along axial direction is discussed, dependence of electrode potential V on current density J, are predicated by means of the newly developed mathematical model.
文摘This paper reported some results about intrinsic nanocrystalline silicon thin films deposited by high frequency (HF) sputtering on p-type c-Si substrates at low temperature. Samples were examined by atomic force microscopy (AFM), X-ray diffraction (XRD), infrared absorption, and ellipsometry. XRD measurements show that this film has a new microstructure, which is different from the films deposited by other methods. The ellipsometry result gives that the optical band gap of the film is about 2.63 eV. In addition, the n-type nc-Si∶H/p-type c-Si heterojunction solar cell, which has open circuit voltage (U oc ) of 558 mV and short circuit current intensity (I sc ) of 29 mA/cm2, was obtained based on the nanocrystalline silicon thin film. Irradiated under AM1.5, 100 mW/cm2 light intensity, the U oc , I sc , and FF can keep stable for 10 h.
基金Project(2004AA513023) supported by the National High Technology Research and Development Program of China
文摘Local segregation in Cu-In precursors and its effects on the element distribution and microstructures of selenized CuInSe2 thin films were investigated. Cu-In precursors with an ideal total mole ratio of Cu to In of 0.92 were prepared by middle frequency alternating current magnetron sputtering with Cu-In alloy target, then CuInSe2 absorbers for solar cells were formed by selenization process in selenium atmosphere. Scanning electron microscope and energy dispersive X-ray spectroscope were used respectively to observe the surface morphologies and determine the compositions of both Cu-In precursors and CuInSe2 thin films. Their microstructures were characterized by X-ray diffractometry and Raman spectroscope. The results show that Cu-In precursors are mainly composed of (Cu11In9) phase with In-rich solid solution. Stoichiometric CuInSe2 thin films with a homogeneous element distribution and single chalcopyrite phase can be synthesized from a segregated Cu-In precursor film with an ideal total mole ratio of Cu to In of 0.92. CuInSe2 thin film shows P-type conductivity and its resistivity reaches 1.2×103Ω·cm.
文摘CdS thin films were prepared by chemical-bath-deposited method and the effect of temperature and time on the properties of CdS thin films was studied. Independent of the deposited temperature, the growth was mainly controlled by the ion-by-ion growth mechanism at the beginning of the film deposition, then the cluster-by-cluster mechanism came to be dominant. The growth rate increased faster with the increasing of temperature until the thickness reached the limitation, then thickness instead become thinner. The scanning electron micro- scope results revealed that the morphology of the CdS film changed from pinholes to rough, inhomogeneous surface with increasing deposition time and deposition temperature. The X- ray diffraction results showed the film structure was a mixture of two phases: hexagonal and cubic, and it was very important to controll deposition time to the film's crystal phase. All films in depth of approxilnate 100 nm existed above 65% transmittance, the absorption edge became "red-shift" with temperature rising. At 60 and 70℃, with 20 min deposited-time, the energy band gap was more than 2.42 eV and decreased with time, while at 80 and 90℃ the energy band gap was less than 2.42 eV and increased little when the time changed from 10min to 15 nfin at 80℃.
文摘Fluorine doped tin oxide SnO2:F thin films were prepared by the spray pyrolysis (SP) technique on glass substrates by using SnC12.2H2O as a precursor and NH4F and HF as doping compounds. A comparison between the properties of the films obtained by using the two doping compounds was performed by using I-V characteristics in the dark at room temperature, AC measurements, and transmittance. It is found that the films prepared by using HF have smaller resistivity, lower impedance and they are less capacitive than films prepared by using NH4F. In addition, these films have higher transmittance, higher optical bandgap energy and narrower Urbach tail width. These results are interesting for the use of SnO2:F as forecontact in CdS/CdTe solar cells.
文摘The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.
文摘The thickness of TiO2 film is vital to realize the optimization on photovoltaic performance of dye sensitized solar cells (DSSCs). Herein, the process of charge separation in DSSCs was simulated by using a drift-diffusion model. This model allows multiple-trapping diffu- sion of photo-generated electrons, as well as the back reaction with the electron acceptors in electrolyte, to be mimicked in both steady and non-steady states. Numerical results on current-voltage characteristics allow power conversion efficiency to be maximized by varying the thickness of TiO2 film. Charge collection efficiency is shown to decrease with film thick- ness, whereas the flux of electron injection benefits from the film thickening. The output of photocurrent is actually impacted by the two factors. Furthermore, recombination rate constant is found to affect the optimized film thickness remarkably. Thicker TiO2 film is suitable to the DSSCs in which back reaction is suppressed sufficiently. On the contrary, the DSSCs with the redox couple showing fast electron interception require thinner film to alleviate the charge loss via recombination. At open circuit, electron density is found to decrease with film thickness, which engenders not only the reduction of photovoltage but also the increase of electron lifetime.
基金Project(11374094)supported by the National Natural Science Foundation of ChinaProject(2013HZX23)supported by Natural Science Foundation of Hunan University of Technology,ChinaProject(2015JJ3060)supported by Natural Science Foundation of Hunan Province of China
文摘The effect of the parameters on the open-circuit voltage, V_(OC) of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that V_(OC) increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density(D_(it)) for the open-circuit voltage(V_(OC)), D_(it)^(crit,1) and D_(it)crit,2(a few 1010 cm^(-2)·e V^(-1)). V_(OC) decreases remarkably when D_(it) is higher than D_(it)^(crit,1). To achieve high V_(OC), the interface states should reduce down to a few 1010 cm^(-2)·e V^(-1). Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. V_(OC) decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×10^(18) cm^(-3) to achieve high V_(OC).
文摘A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombarding the growing, deposited thin film electrode with a low energy hydrogen ion beam An amorphous LaNi4 hydride thin film electrode has been prepared by this Hydrogen Ion Beam Assisted Deposition (HIBAD) technique. The electrochemical discharge capacity and cycle life of this electrode in a 6 M KOH solution surpass previously reported values for La-Ni thin film electrodes prepared by other deposition methods.
文摘Atomic force microscope (AFM) is able to produce three-dimensional digital data in both force-mode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force-mode to image the repulsive and attractive force patterns. The cross sections of polycrystalline CdS/CdTe and amorphous silicon heterojunction solar cells are observed with AFM. In case of short circuit, the microstructures of different layers in the samples are clearly displayed. When the cells are open circuit, the topographical images are altered, the potential outline due to the space charge in junction region is observed. Obviously, AFM can be employed to investigate experimentally built-in potential in junction of semiconductor devices, such as solar cells.
文摘The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.