期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Solution of the Euler Equations with Approximate Boundary Conditions for Thin Airfoils 被引量:2
1
作者 Gao Chao Luo Shijun F.Liu 《西北工业大学学报》 EI CAS CSCD 北大核心 2003年第3期253-258,共6页
This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on th... This paper presents an efficient numerical method for solving the Euler equations on rectilinear grids. Wall boundary conditions on the surface of an airfoil are implemented by using their first order expansions on the airfoil chord line, which is placed along a grid line. However, the method is not restricted to flows with small disturbances since there are no restrictions on the magnitude of the velocity or pressure perturbations. The mathematical formulation and the numerical implementation of the wall boundary conditions in a finite volume Euler code are described. Steady transonic flows are calculated about the NACA 0006, NACA 0012 and NACA 0015 airfoils, corresponding to thickness ratios of 6%, 12%, and 15%, respectively. The computed results, including surface pressure distributions, the lift coefficient, the wave drag coefficient, and the pitching moment coefficient, at angles of attack from 0° to 8° are compared with solutions at the same conditions by FLO52, a well established Euler code using body fitted curvilinear grids. Results demonstrate that the method yields acceptable accuracies even for the relatively thick NACA 0015 airfoil and at high angles of attack. This study establishes the potential of extending the method to computing unsteady fluid structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in both computer time and human work since it would not require the generation of time dependent body fitted grids. 展开更多
关键词 EULER方程 近似边界条件 薄翼剖面 直线栅格 流体动力学 控制方程 虚拟格值 扰动
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部