By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is i...By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.展开更多
SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorpti...SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.展开更多
文摘By the optimum theory, a new cutting analytical method of the membrane structure is developed. The B-spline curve is applied to make smooth the boundary of the membrane strip. By this method, the cutting accuracy is improved. Finally, a cutting analysis example of a tension membrane structure is given.
基金This work was supported by the National Natural Science Foundation of China (No.50172044).
文摘SiC films were prepared by modified heating polystyrene/silica bilayer method on Si(111) substrate in normal pressure flowing Ar ambient at 1300℃ . The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.