Organic thin-film transistor constructs the headstone of flexible electronic world such as conformable sensor arrays and flexible active-matrix displays. With solutionprocessed methods, it forges ahead toward large-ar...Organic thin-film transistor constructs the headstone of flexible electronic world such as conformable sensor arrays and flexible active-matrix displays. With solutionprocessed methods, it forges ahead toward large-area, lowcost manufacturing goals. As an indispensable complement to traditional silicon-based transistors, organic thin-film field-effect transistors have made great progress in materials,performance, bending capacity, and integrated circuits in recent few years. Flexible transistors and circuitry have extremely promising application prospects and possess irreplaceable status in foldable displays, artificial skins and bendable smart cards. In this review, we will discuss the evolution of flexible organic transistors and integrated circuits in terms of material, fabrication as well as application.展开更多
The full solution-processed oxide thin-film-transistors(TFTs) have the advantages of transparency, ease of large-area fabrication, and low cost, offering great potential applications in switching and driving fields, a...The full solution-processed oxide thin-film-transistors(TFTs) have the advantages of transparency, ease of large-area fabrication, and low cost, offering great potential applications in switching and driving fields, and attracting extensive research interest. However, the performance of the solution-processed TFTs is generally lower than that of the vacuum-deposited ones. In this article, the full-solution processed TFTs with zinc-tin-oxide(ZTO) semiconductor and aluminium(Al_2O_3) dielectrics were fabricated, and their mobilities in the saturation region are high. Besides, the effect of the Al_2O_3 dielectrics' preparation technology on ZTO TFTs' performance was studied. Comparing the ZTO TFTs using the spin-coated Al_2O_3 dielectrics of 1–4 layers, the ZTO TFT with 3-layer Al_2O_3 dielectrics achieved the optimal performance as its field-effect carrier mobility in the saturation region is 112 cm^2/V s, its threshold voltage is 2.4 V, and its on-to-off current ratio is 2.8×105. This is also the highest reported carrier mobility of the solution-processed ZTO TFTs.展开更多
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12030400)the National Basic Research Program of China(2013CB933504)+2 种基金the National Natural Science Foundation of China(61221004)the Beijing Training Project for the Leading Talents in S&T(Z151100000315008)the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology,Institute of Microelectronics of Chinese Academy of Science,and Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM)
文摘Organic thin-film transistor constructs the headstone of flexible electronic world such as conformable sensor arrays and flexible active-matrix displays. With solutionprocessed methods, it forges ahead toward large-area, lowcost manufacturing goals. As an indispensable complement to traditional silicon-based transistors, organic thin-film field-effect transistors have made great progress in materials,performance, bending capacity, and integrated circuits in recent few years. Flexible transistors and circuitry have extremely promising application prospects and possess irreplaceable status in foldable displays, artificial skins and bendable smart cards. In this review, we will discuss the evolution of flexible organic transistors and integrated circuits in terms of material, fabrication as well as application.
基金supported by the National Natural Science Foundation of China(Grant No.21161160447)
文摘The full solution-processed oxide thin-film-transistors(TFTs) have the advantages of transparency, ease of large-area fabrication, and low cost, offering great potential applications in switching and driving fields, and attracting extensive research interest. However, the performance of the solution-processed TFTs is generally lower than that of the vacuum-deposited ones. In this article, the full-solution processed TFTs with zinc-tin-oxide(ZTO) semiconductor and aluminium(Al_2O_3) dielectrics were fabricated, and their mobilities in the saturation region are high. Besides, the effect of the Al_2O_3 dielectrics' preparation technology on ZTO TFTs' performance was studied. Comparing the ZTO TFTs using the spin-coated Al_2O_3 dielectrics of 1–4 layers, the ZTO TFT with 3-layer Al_2O_3 dielectrics achieved the optimal performance as its field-effect carrier mobility in the saturation region is 112 cm^2/V s, its threshold voltage is 2.4 V, and its on-to-off current ratio is 2.8×105. This is also the highest reported carrier mobility of the solution-processed ZTO TFTs.