Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance ...Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance changes of the nanocluster films and were characterized by both high gauge factor and wide detection range. The response characteristics of the strain sensors were found to depend strongly on the nanocluster coverage, which was attributed to the percolative nature of the electron transport in the closely spaced nanocluster arrays. By controlling the nanocluster deposition process, a strain sensor composed of nanocluster arrays with a coverage close to the effective percolation threshold was fabricated. The sensor device showed a linear response with a stable gauge factor of 55 for the applied strains from the lower detection limit up to 0.3%. At higher applied strains, a gauge factor as high as 200 was shown. The nanocluster films also demonstrated the ability to response to large deformations up to 8% applied strain, with an extremely high gauge factor of 3500.展开更多
Controllable formation of microstructures in the assembled graphene film could tune the physical properties and broaden its applications in flexible electronics.Many efforts have been made to control the formation of ...Controllable formation of microstructures in the assembled graphene film could tune the physical properties and broaden its applications in flexible electronics.Many efforts have been made to control the formation of wrinkles and ripples in graphene films.However,the formation of orderly wrinkles in graphene film remains a challenge.Here,we reported a simple strategy for the fabrication of graphene film with periodic and parallel wrinkles with a pre-stretched polydimethylsiloxane substrate.The width of the wrinkles in graphene can be controlled by changing the pre-stretched strain of the substrate.The average width of wrinkles in graphene film on the substrate with pre-stretched strain of 10%,20%,and 50%was about 3.68,2.99 and 2.01µm,respectively.The morphological evolution of wrinkled double-layered graphene under mechanical deformation was observed and studied.Furthermore,a strain sensor was constructed based on the wrinkled graphene,showing high sensitivity,large working range and excellent cyclic stability.These strain sensors show great potential in real-time motion detection,health surveillance and electronic skins.展开更多
基金supported by the National Natural Science Foundation of China(No.11627806)a Project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘Flexible strain sensor devices were fabricated by depositing Pd nanoclusters on PET membranes patterned with interdigital electrodes. The sensors responded to the deformation of the PET membranes with the conductance changes of the nanocluster films and were characterized by both high gauge factor and wide detection range. The response characteristics of the strain sensors were found to depend strongly on the nanocluster coverage, which was attributed to the percolative nature of the electron transport in the closely spaced nanocluster arrays. By controlling the nanocluster deposition process, a strain sensor composed of nanocluster arrays with a coverage close to the effective percolation threshold was fabricated. The sensor device showed a linear response with a stable gauge factor of 55 for the applied strains from the lower detection limit up to 0.3%. At higher applied strains, a gauge factor as high as 200 was shown. The nanocluster films also demonstrated the ability to response to large deformations up to 8% applied strain, with an extremely high gauge factor of 3500.
基金This work was financially supported by the National Natural Science Foundation of China(51772335)the Science and Technology Program of Guangzhou(201904010450).
文摘Controllable formation of microstructures in the assembled graphene film could tune the physical properties and broaden its applications in flexible electronics.Many efforts have been made to control the formation of wrinkles and ripples in graphene films.However,the formation of orderly wrinkles in graphene film remains a challenge.Here,we reported a simple strategy for the fabrication of graphene film with periodic and parallel wrinkles with a pre-stretched polydimethylsiloxane substrate.The width of the wrinkles in graphene can be controlled by changing the pre-stretched strain of the substrate.The average width of wrinkles in graphene film on the substrate with pre-stretched strain of 10%,20%,and 50%was about 3.68,2.99 and 2.01µm,respectively.The morphological evolution of wrinkled double-layered graphene under mechanical deformation was observed and studied.Furthermore,a strain sensor was constructed based on the wrinkled graphene,showing high sensitivity,large working range and excellent cyclic stability.These strain sensors show great potential in real-time motion detection,health surveillance and electronic skins.