CoNiFe,CoNiFeB and CoNiFeP soft magnetic thin films were prepared by cyclic voltammetry method.The morphologies,composition and structures were characterized by scanning electron microscope(SEM),energy-dispersive X-...CoNiFe,CoNiFeB and CoNiFeP soft magnetic thin films were prepared by cyclic voltammetry method.The morphologies,composition and structures were characterized by scanning electron microscope(SEM),energy-dispersive X-ray spectroscope(EDS) and X-ray diffractometer(XRD).The soft magnetic properties were investigated through vibrating sample magnetometer(VSM).The corrosion resistance was investigated through Tafel polarization and electrochemical impedance spectroscopic(EIS).The results show that all the electrodeposited CoNiFe,CoNiFeB and CoNiFeP films are mixtures of crystalline and amorphous phases,and high amount of boron/phosphorus-containing additives favors the formation of amorphous state.Nanostructure is obtained in CoNiFe and CoNiFeB films.The inclusion of boron causes the film more dense and also increases its corrosion resistance.Meanwhile,the inclusion of boron lowers its coercivity(Hc) from 851.48 A/m to 604.79 A/m,but the saturation magnetic flux density(Bs) is almost unchanged.However,the addition of phosphorus greatly increases the film particle size and decreases its corrosion stability.The coercivity(Hc) of CoNiFeP film is also highly increased to 12485.79 A/m,and its saturation magnetic flux density(Bs) is greatly decreased to 1.25 T.展开更多
The diamond films have been deposited by the hot filament CVD method on molybdenum substrates from the mixture reactant gas of acetone and hydrogen.The surface morphologies of the obtained diamond films under various ...The diamond films have been deposited by the hot filament CVD method on molybdenum substrates from the mixture reactant gas of acetone and hydrogen.The surface morphologies of the obtained diamond films under various deposition conditions have been observed by scanning electron microscope(SEM).The experimental results strongly indicate that the surface morphologies of the resulting films have closely related to the deposition conditions,i.e.,reaction pressure.For molybdenum substrates,under the lower reaction pressure the surface morphologies of the grains comprising the resulting films mainly display the small single crystal cubo-octahedron and double small crystal cubo-octahedron;under the higher reaction pressure,the surface morphologies mainly display the large cauliflower-like.These results show that there are various crystal habits for CVD diamond under various deposition conditions.展开更多
Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of...Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of intraocular lens by ion beam sputtering depositing.We analyzed the surface morphology of intraocular lens through SEM and AFM.We detected intraocular lens resolution through the measurement of intraocular lens.Biocompatibility of intraocular lens is preliminary evaluated in this test.Results:The surface morphology of intraocular lens material was not changed,and was in line with the requirements of smoothness.Resolution was in line with national requirements.Unmodified and modified IOLs's cytotoxicity were 1 and 0.6 grade respectively.Hemolytic rates of modified and unmodified were both less than 5%.Conclusion:Ion beam sputtering deposition of objects didn't only affect the surface morphology and the basic optical performance,but also can enhance the biocompatibility of intraocular lens.Ion beam sputtering deposition technique has provided new methods for the surface modification of IOLs and PMMA materials.展开更多
SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with g...SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with good crystallization and big grain size. The conductivity of the films was measured by photoelectrochemical test. It is proved that the SnS:Ag films are p-type of semiconductor. Hall measurement shows that the carrier concentration of the films increases, while their resistivity decreases after Ag-doping.展开更多
基金Projects(50771092,21073162) supported by the National Natural Science Foundation of ChinaProject(2005DKA10400-Z15) supported by the Ministry of Science and Technology of China
文摘CoNiFe,CoNiFeB and CoNiFeP soft magnetic thin films were prepared by cyclic voltammetry method.The morphologies,composition and structures were characterized by scanning electron microscope(SEM),energy-dispersive X-ray spectroscope(EDS) and X-ray diffractometer(XRD).The soft magnetic properties were investigated through vibrating sample magnetometer(VSM).The corrosion resistance was investigated through Tafel polarization and electrochemical impedance spectroscopic(EIS).The results show that all the electrodeposited CoNiFe,CoNiFeB and CoNiFeP films are mixtures of crystalline and amorphous phases,and high amount of boron/phosphorus-containing additives favors the formation of amorphous state.Nanostructure is obtained in CoNiFe and CoNiFeB films.The inclusion of boron causes the film more dense and also increases its corrosion resistance.Meanwhile,the inclusion of boron lowers its coercivity(Hc) from 851.48 A/m to 604.79 A/m,but the saturation magnetic flux density(Bs) is almost unchanged.However,the addition of phosphorus greatly increases the film particle size and decreases its corrosion stability.The coercivity(Hc) of CoNiFeP film is also highly increased to 12485.79 A/m,and its saturation magnetic flux density(Bs) is greatly decreased to 1.25 T.
文摘The diamond films have been deposited by the hot filament CVD method on molybdenum substrates from the mixture reactant gas of acetone and hydrogen.The surface morphologies of the obtained diamond films under various deposition conditions have been observed by scanning electron microscope(SEM).The experimental results strongly indicate that the surface morphologies of the resulting films have closely related to the deposition conditions,i.e.,reaction pressure.For molybdenum substrates,under the lower reaction pressure the surface morphologies of the grains comprising the resulting films mainly display the small single crystal cubo-octahedron and double small crystal cubo-octahedron;under the higher reaction pressure,the surface morphologies mainly display the large cauliflower-like.These results show that there are various crystal habits for CVD diamond under various deposition conditions.
文摘Objective:To study the characteristics of the intraocular lens using ion beam sputtering depositing titanium nitride thin film on the intraocular lens(IOLs).Methods:To deposite titanium nitride thin film on the top of intraocular lens by ion beam sputtering depositing.We analyzed the surface morphology of intraocular lens through SEM and AFM.We detected intraocular lens resolution through the measurement of intraocular lens.Biocompatibility of intraocular lens is preliminary evaluated in this test.Results:The surface morphology of intraocular lens material was not changed,and was in line with the requirements of smoothness.Resolution was in line with national requirements.Unmodified and modified IOLs's cytotoxicity were 1 and 0.6 grade respectively.Hemolytic rates of modified and unmodified were both less than 5%.Conclusion:Ion beam sputtering deposition of objects didn't only affect the surface morphology and the basic optical performance,but also can enhance the biocompatibility of intraocular lens.Ion beam sputtering deposition technique has provided new methods for the surface modification of IOLs and PMMA materials.
基金supported by the Depart ment of Science & Technology of Fujian Province(Nos.2008I0019,2006F5062,2006J0032)the Fuzhou University(Nos.K-081005,XRC-0736)~~
文摘SnS:Ag thin films were deposited on ITO by pulse electro-deposition. They were characterized with X-ray diffraction spectroscopy and atomic force microscope. The as-deposited films have a new phase (Ag8SnS6) with good crystallization and big grain size. The conductivity of the films was measured by photoelectrochemical test. It is proved that the SnS:Ag films are p-type of semiconductor. Hall measurement shows that the carrier concentration of the films increases, while their resistivity decreases after Ag-doping.